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VARTANTS AND EXTENSIONS OF A FAST DIRECT NUMERICAL CAUCHY-RIEMANN
SOLVER, WITH ILLUSTRATIVE APPLICATIONS
E. Dale Martin and Harvard Lomax

Ames Research Center

SUMMARY

Revised and extended versions of a fast, direct (noniterative) numer-
ical Cauchy-Riemann solver are presented for solving finite-difference
approximations of first-order systems of partial differential equations.
Although the difference operators treated are linear and elliptic, one signif-
icant application of these extended direct Cauchy-Riemann solvers is in the
fast, semidirect (iterative) solution of fluid-dynamic problems governed by
the nonlinear mixed elliptic-hyperbolic equations of transonic flow. Different
versions of the algorithms are derived and the corresponding FORTRAN computer
programs for a simple example problem are described and listed. The algorithms
are demonstrated to be efficient and accurate,.

INTRODUCTION

Highly efficient finite-difference algorithms and programs called '"fast
direct elliptic solvers" are becoming increasingly more useful for solving
partial differential equations in practical problems as the techniques that
incorporate the solvers, as well as the solvers themselves, become more highly
developed. The fast direct solvers differ from other elliptic solution algo-
rithms in that they take advantage of the sparseness and regularity of the
highly ordered coefficient matrix of the set of finite-difference equations
to obtain a direct solution in a sequence of simple recursive operations.
Thus, they are essentially noniterative, and the consequent high efficiency
accounts for their attractiveness in various applications.

The purposes of this report are (a) to develop highly efficient and
stable numerical algorithms called Cauchy-Riemann solvers for use in methods
that treat the first-order elliptic operators in generalized Cauchy-Riemann
equations, (b) to describe the development of several different versions of
these algorithms, and (c¢) to provide a simple example computer program for
each version, along with the subroutines for the Cauchy-Riemann solvers.

Cauchy~Riemann solvers have significant applications in semidirect
(globally implicit) iteration techniques for rapid solution of transonic
flows. 1t is expected that, as the direct solvers become further developed
and generalized, the significance of their applications will increase.



Fast direct elliptic solvers were first developed for solving Poisson's
equation on a rectangle (refs. 1-5). Since then, the algorithms have been
generalized, extended, and applied in numerous ways: (a) Fast solvers have
been extended to three dimensions (e.g., refs. 5 and 6, among others).

(b) They have been further developed and extended to treat more general
second-order elliptic equations and more general boundary conditions and
meshes (refs. 5 and 7-17). (c¢) They have been extended to include interior
conditions and irregular domains (refs. 18-23). (d) They have been extended
to fourth-order (biharmonic) partial differential equations in references 22
and 24. (e) They have been extended to apply to sets of first-order elliptic
equations in reference 25. Chapter 9 in reference 26 also describes an early
direct solver for the Cauchy-Riemann equations. However, reference 26 indi-
cates that the algorithm described there has a very low mesh-number limitation,
which would severely restrict the usefulness; in addition, that algorithm
would be significantly less efficient than the "fast" solvers of references 1
to 5 and 25 that are based on either fast Fourier transforms or cyclic redue-
tion. (f) Direct elliptic solvers have been applied within iteration schemes
(i.e., semidirect methods) to extend their usefulness to nonseparable elliptic
equations (refs. 27 and 28) and either to Poisson equations as part of a
system of nonlinear equations (refs. 29 and 30; see also ref. 31) or as the
total driving algorithm in a semidirect iteration of nonlinear equations
(refs. 32-34) and of equations that are both nonlinear and nonelliptic in

some regions of the solution domain (refs. 35-38). (g) In addition to other
applications in the literature (now too numerous to attempt to list here), a
notable application of a direct Poisson solver is as an iterative-acceleration
device for finite-difference, line~relaxation solutions of the nonlinear,
mixed-type equations of transonic flow (refs. 39-41).

The fast Cauchy-Riemann solver developed in reference 25 and used in
reference 35, and the more recent variant and extension of it used in refer-
ences 36 to 38 (to be described below as version C), can be used in problems
where a Poisson solver or other second-order elliptic solver could also be
used. In addition, however, the direct solution of the corresponding set of
first-order equations can be especially useful, for example, in fluid dynamics,
because (a) the boundary conditions, including solid-surface conditions and
and internal jump (e.g., shock-wave discontinuity or contact discontinuity)
conditions, are given most naturally in terms of components of the velocity
vector; and (b) the formulation in terms of velocity components (generalized
Cauchy-Riemann equations) allows both point sources and point vortices to be
included simultaneously. This is contrasted with stream-function and velocity-
potential formulations, which are second-order partial differential equations
(where velocity components are defined in terms of derivatives of either
stream function or velocity potential). The stream-function formulation allows
specification of point vortices but not point sources of mass, and the
velocity-potential formulation allows specification of point sources but not
point vortices.

In the sections below, after description of the computational meshes and
mathematical definitions, five versions of the Cauchy-Riemann solver, denoted
A to E, are developed. 1In addition, computer programs including all subrou-
tines for each version are listed in appendices for a simple example problem
that illustrates use of the solvers. Version A is the original version of
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the Cauchy-Riemann solver derived in reference 25 and used for the slightly
supercritical transonic flow problem in reference 35. The present matrix
derivation of version A is more concise than the previous derivation, and
more details including the program listing can be given here. A significant
step for improving the efficiency resulted in the development of version B.
Versions B and C are essentially the same except that additional terms (with
constant coefficients) needed to stabilize iterations in a semidirect method
are included in C. Version C is the solver used for the transonic-flow cal-
culations in references 36 to 38. Versions D and E are developed for future
use. They use a mesh that is symmetrical about the x axis, whereas the
previous versions used different configurations for upper and lower boundaries
on the mesh and different conditions applied there. These versions are
especially desired for future treatment of airfoils represented by interior
conditions specified on a slit in the center of the mesh. Version D uses
constant coefficients on the extra stabilizing terms, whereas version E uses
arbitrarily specified, variable (in x) coefficients on the extra terms.
Although versions B and C together and D and E together are derived as single
algorithms, of which the pairs of versions are special cases, the separate
sample programs are provided for all five versions because of the differences
in efficiency that may be significant in future applications. The distinguish-
ing features of each version are further described in the sections dealing
with the derivations (beginning on pages 18, 21, and 24). A guide for the
prospective user's choice of algorithm is given at the end of the section
preceding the Concluding Remarks.

GENERAL DIFFERENTIAL AND FINITE-DIFFERENCE EQUATIONS

The algorithm and programs to be developed are for numerical solution of
the nonhomogeneous Cauchy-Riemann equations:

ou 3V

Fyris 5y s(x,y) (1a)
U v _ !
ay 3 - UJ(OC,Z/) (lh)

or of more general extensions of equations (1), which have quite general
physical applications. Throughout this report, the terminology of fluid
mechanics is used. The dependent variables u and v then frequently repre-
sent velocity components. Generally, however, for any two-dimensional vector!
(u,v), equation (la) is the definition of the divergence (8) of the vector,
and equation (1b) is the definition of the curl (w) of the vector or, equiva-
lently, the "vorticity" of the vector (u,v). Any point where the divergence
8 1is not zero is called a "source" of the vector (u4,v), and any point where
w 1is not zero is called a "vortex" of the vector (#,v). In any region where

la11 equations and definitions in this section have three-dimensional
counterparts, but the present scope is limited to two dimensions.



s is zero, the vector (u,v) is "solenoidal," and in any region where w 1is
zero, the vector (u,v) is "irrotational." Consistent with the terminology of
fluid mechanics and the above general definitions, then, s(x,y) is here called
a "source function," w(x,y) is called a "vorticity function," and equations (1)
are referred to, respectively, as the "continuity equation" and the "rotation-
ality equation."

The algorithms to be developed can be useful in the efficient numerical
solution of generalized Cauchy-Riemann equations; that is, this work is
relevant in certain ways to the following more general form of the set of
differential equations:

ou oV _ _
S + 3y = s(x,y,u,v,ax,ay) (2a)
oU oV

ay = 32 - "w(xsysusvaax,ay) (Zb)

where the notation on the right side indicates that & and w can be arbi-
trarily specified functions not only of & and y but also of the dependent
variables, u and v, and derivatives of arbitrary order of % and v with
respect to x and y, with 3, being the partial-derivative operator, etc.
Thus the equations can be both nonlinear and nonelliptic, even though the left
side of equations (2) is a linear elliptic operator.

Iterative schemes for the solution of equations (2) treat the right side
as known from a previous iteration. At each iteration, then, the "iteration
equations'" for solving the system of equations (2) are actually of the form
of equations (1), in the simplest case, or they may be of a slightly more
general linear form.

The algorithms to be derived for solving equations (1) use central finite
differences on the left side. For use in iteration schemes, it has been found
(refs. 36-38) that, in some cases, certain stabilizing terms need to be added
to both sides of the equations. Then the difference operator on the left will
contain terms in addition to those representing the derivatives in equa-
tions (1). The most general form of the approximate set of finite-difference
equations to be considered here for representing equations (1) is

U ;; u_ 4 ;; bttt g = a+u$ +aTuz + () (3a)
x Yy
= g'(+) (3a")
x4 x4
uhu_vhv=‘w(+) (3b)
Yy X

These equations are written for a staggered mesh, which has been found to have
numerous advantages. Refer to figure 1(a), on which: the point at which
equation (3a) is being solved is represented by (+); the point at which equa-
tion (3b) is being solved is represented by (+); the values of u and v at

4 A-5988



the centers of the boundaries of the mesh cell for the continuity equation
(centered at the dot) are ut, u~, v*, and v~, and the values of u and v

at the centers of the boundaries of the mesh cell for the rotationality
equation (centered at the cross) are u*, ut, U*, and v*. The notations s(+)
and w(+) in equations (3) indicate that the source function s is evaluated
at the dot and the vorticity function w 1is evaluated at the cross. The
quantities at and a= in equation (3a) may generally vary with z. The
symbols ug and u; in equation (3a) denote some known representations of
ut and u~, such as an analytical solution or results from a previous itera-
tion in an iterative solution. The quantity &'(+) is defined to equal the
right side of equation (3a). The « and y mesh intervals, hy and hy, are
constants.

COMPUTATIONAL MESHES AND DISCRETIZED VARTABLES

For the development of the computational algorithms to solve equations (3),
the configuration of mesh cells shown in figure 1(a) is imbedded in a large
computational mesh. The different versions of the Cauchy-Riemann solver to
be described use different treatments of the upper boundary, and so the mesh
configurations differ there. However, since the left and bottom boundaries
are the same for all versions, a system of mesh-point indexing can be used
that is common to all versions, with origins of coordinate indices at or near
the left bottom corner.

Mesh cell for
continuity eq.

(b) indexing of basic configuration.

Figure 1.- Mesh cells for continuity and rotationality equations.

A-5988 5



Consider rectangular coordinates &« and y and let the left and right
boundaries be x = xy and x = 2, and the bottom and top boundaries be y = y,
and y = yy. Let J and k index the &« and y directions, respectively, so
that discrete coordinates xj and yj, are given by

xj =z, + jhx , Y = Yy + khy (4a)

where J and k¥ are integers. Now consider the indexing of the variables in
figure 1(a) and refer to figure 1(b). For integers J and k, the point where
w is defined for equation (3b) is labeled w; 3 on figure 1(b). However,
the point where the source function s 1is de%ined is displaced from Wi %

by half intervals. To avoid the use of indices containing fractions (haif
intervals), define the discrete coordinates as

- . 1 - v _ L
zly =@, + (Jv _ z)hx T (k 2>hy (4b)

where J' and k' are integers. In order that the indices on w have the
same values as those on & corresponding to the rotationality equation and
the continuity equation, respectively, for the staggered mesh cells in
figures 1, let

PR § ' 1
j'=d+5, Kk k+ 3 (5)

The locations where u and v are defined in figure 1l(a) make it convenient
to then define
u+

= ot (6)

uj’kv = ] Uj',k

We thus define values of w, s, U, and v at discrete points in figure 1(b) as

wj,k m(xj’yk) s sjv’kl = S(xéwsy;l'(v)
(7)

uj,k' = u(xj,yk.) , vj,k v(xj,,yk)

As used in equation (3a), the second-order-accurate, central finite-difference
approximations needed for the continuity equation are then

(Bu/ax)j,’ky ~ (uj,k' - uj_l,k')/hx
(8a)
(av/ay)jv,kv i (v",k -V
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and, as used in equation (3b), the second-order-accurate, central finite-
difference approximations needed for the rotationality equation are

(3u/39)j’k &~ (uj,k'+1 - uj,k')/hy
(8b)

(av/aaz:)j,;,< A (vj'+1,7< -

25 00 M

The motivation for using integer values of j, ', k, and k' in equations (4)
and (7) is that, for purposes of indexing the variables u, v, s, and w, there
need not be any distinction between j and j' or between %k and k'. Thus,
for example, whenever Ui k is written, uj k' 1is implied. The distinction
is important only when determining actual locations on the mesh.

Figure 2 shows three different mesh configurations that correspond to
the algorithm versions indicated. Figure 1(b) is imbedded in each mesh, as
indicated by crosshatching (with J,k = 2,2). The three meshes differ only
at the upper boundary; the reasons for the differences are explained in later
sections. The circled symbols in figure 2(a,b,c) indicate quantities that are
specified as boundary conditions. As in figure 1(a), the dots in figure 2
indicate points where the continuity equation (3a) is to be satisfied (values
of sj' k' specified) and the crosses indicate points where the rotationality
equation (3b) is to be satisfied (values of ws % specified). An exception
to this is that on the line ¥y =y, din figure 2(a) for version A the
"circled u'" symbols are at points that should also be marked by crosses
because the rotationality equation is to be satisfied there and values of w,
as well as u, are to be specified there.

For defining the mesh dimensions and the dimensions of relevant matrices,
let m, my, n, n;, and n, be integers so that:

m = the number of discrete x values where either the continuity or the
rotationality equation is to be satisfied, that is, the number of dots or

crosses in a horizontal row in figures 2(a), (b), and (c) (all versions
of the solver);

has the value 4 for the special case illustrated in figure 2;
my  denoted as the "mesh number for the x direction':
=m+ 1;
has the value 5 for the special case illustrated in figure 2;
n = number of discrete y values where the rotationality equation is to be
satisfied in figures 2(b) and 2(c), that is, the number of crosses in a

vertical column in figures 2(b) and 2(c) (versions B, C, D, and E of the
solver);



ni

n2

also the number of discrete y values where the continuity equation is
to be satisfied in figure 2(b), that is, the number of dots in a vertical
column in figure 2(b) (versions B and C of the solver);

has the value 3 for the special case illustrated in figure 2;

denoted as the "mesh number for the y direction';

n+ 1;

L . ‘s .

2", where [ 1is a positive integer;

number of discrete y values where the rotationality equation is to be
satisfied in figure 2(a), that is, the number of crosses in a vertical
column in figure 2(a) (version A);

also the number of discrete y values where the continuity equatiomn is
to be satisfied in figures 2(a) and 2(c), that is, the number of dots in

a vertical column in figures 2(a) and 2(c) (versions A, D, and E);

has the value 4 for the special case illustrated in figure 2;

=n + 2

has the value 5 for the special case in figure 2(a).

To summarize the ranges of the discretized functions on the meshes in

figure 2, table I is provided.

TABLE I.- RANGES OF DISCRETIZED FUNCTIONS

. Values of coordi- Discrete
Function Version Réng§s of nate where func- coordinate
of solver indices tion is defined equation
Us g All J =0¢tom z =z xj =x, + jhx
’
All k' = 1 to n, Y = Ypor Ygpr =y, t (K- 1/2)hy
A k' = ny y =4y, y, =Y, *+ nlhy
Vi ok All Jg' =1 tom T = xé. x&, =z, + @' - %)hx
A,U,E k = 0 to n1 y = yk yk = yl + khy
B,C k=0ton Y =Yy Yp =¥, * khy
S5t gt All j'=1tom x = xé. x}, =z, + G' - %)hx
A,D,E k' =1 to m Y = Yo Ypr =y, + (K" - %)hy
B,C k' =1ton y = yi. yi. =y, + (k' - %)hy
ws g A1l j=1tom @ =z, xj=ac2+jhx
A k = to My =yk yk=yl+k7’l
= = = +
B,C,D,E k 1 ton Yy =Y Yy = Y, _khy




In terms of the above defined parameters, the mesh intervals %, and hy

are
hx = (xu - xl)/[m + (1/2)] , all versions (9a)
hy = (yu - yl)/nl , versions A,D,E (9b)
hy = (yu - yl)[n + (1/2)] , versions B,C (9c)

It will be convenient for the FORTRAN programs to also define "nominal' values
of x,, g, and y,, denoted as Xy, Xyys Yyus DY

(94)

= @ = )M

h (9e)

it

(y

Y un yz)/nl

The usefulness of these definitions is explained in the later section "FORTRAN
Programs."

MATRIX DEFINITIONS AND RELATIONS

With the above definitions of mesh parameters and variables, we can now
define some particular matrices and consider some matrix relations that will
be of common use in the next four sections for developing the different ver-
sions of the Cauchy-Riemann solvers. As described above, we do not distin-
guish between J and j' or between %k and k' for purposes of indexing the
dependent variables and specified functions.

First define the column vectors of dimension m:

Uk = COl[ul,k’ uz’k, o e ey um,k] (10a)
Vk = COl[vl,k’ vz,k’ e e ey vm’k] (10b)
fk = COl[fl,k’ fz,k’ o« e e m,k] (10c)

(104)

g, = COl[gl,k’ gz’k, o e ey gm,k]

where fﬁ,k and g7 r are to be defined later in terms of s 7 and NT
The range of %k 1n equations (10) is slightly different for different ver-
sions of the solver and is specified later.

10



With the vectors in equations (10) as elements, next define the following
block column vectors of block dimension p or g:

U= col[U;, Up, . . ., Ué] (11a)
V = col[V], Vo, . + ., Vb] (11b)
f = colify, fo, . . ., fq] (11c)
g = collgy, 82, « « . gp] (11d)

In each application of these vectors, p and g will be specified in terms of
n and n;.

A general tridiagonal matrix of square dimension m is denoted by

o "
by el

T b.,ec.) = . b, . 12
m (aJ g CJ ) aJ F cJ ( )

Denote a general diagonal matrix of square dimension m by
by
qm(bj) = Tﬁ(O,bj,O) = ‘.. (13)

b

M 1 mxm
Special cases are the unit matrix and null matrix, both of dimension m:

I = Tﬁ(O,l,O) s 0= xw(0,0,0) (14)

Equations (12) and (13) may also be used to define general block-tridiagonal
and block-diagonal matrices of block dimension p, for example:

11



[ B T
A B C
Tp(A,B,C) = e, te, el (15a)
A B
- A B p*p blocks
and
D (B) =T (0,B,0 15b
p( ) p( ) (15b)

where the arguments A, B, and C are dummy mxm matrices and O is defined in
equation (14). At this point, it is also convenient to define the following
special partitioned square block matrices of block dimension p:

[0 -+ 0 : 1]
o -~ 0 1
U~ : b (e
oo
l§
L0 0, Il pxp blocks
K 0 : 0]
!
1 (B) = : (17)
p )
(o) (o) \ (0]
-~ - _ _ . - -
L0 0 ! B-'pxp blocks
and in terms of equations (15b) and (17) then define
D'(B) = D_(B) - = J_(B) (18)
p p 2 °p

which is a block-diagonal matrix with the last diagonal block equal to half the
matrix occupying each of the other diagonal blocks.

A convenient matrix for following developments is denoted by qu(A) and
is defined as follows. Consider a general matrix M?q of dimension p x g:

— —

myy My M3 Tt Mg
ma1 mp2 tot .
M = 19
bq : : . (19)
"p1 Tp2 tt Tpq
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Let ¢ = min{p,q}. Then the diagonal is defined to consist of the elements
m:;2y © =1, 2, « « +, & (whether or not p = gq; see, e.g., ref. 42); the
superdiagonal consists of the elements m; ;i; and the subdiagonal consists
of the elements mg f-1- Now to define ﬁ’ (A), let each element on its
diagonal be a matrix -A of dimension m " and let each element on its super-
diagonal be the matrix A. Let all other elements be m-dimensional null
matrices. Thus Epg(A) has p rows and g columns of m-dimensional blocks.
Two special cases of interest are for g =p + 1:

N A -
) -A A
Ep,p+l(A) N ., ., ., (20a)
L 0 -A A px(p+1) blocks
and for g = p:
= A ]
o -A ‘.,
E (A) = E A) = (20b)
P( ) PP( ) .. . A
- 0 A pxp blocks

It is convenient to further define some special matrices that will be of
use in the following four sections. From here on, whenever one of these
matrix symbols is used, it has the specific definition given in this section.
For these definitions, let B, B1,d> and Bs,d be quantities that are to be
specified later. Then, in terms of the above-defined notation, define the
particular m-dimensional square matrices:

AZT (-8, 5.8 .0 (212)
B =T (0,8,-8) (21b)
and
C =z 21 + AB
= Tm(_aj’sj,_Yj) (21c)

13



where

% T BBy
B, =248, +8 ) L G=1tom (214)
= Yj - BB]:j J

with 82,1 Z 0; also define the particular block matrices of block dimension
P, or g, or p %X g, as indicated:

D, = Dq(A) (22a)
D, = Dp(B) (22b)
D} = D;(B) (22¢)
E = qu(l) (224)
E” = Block transpose of E (22e)

where A and B are defined in equations (21) and p and ¢ are to be specified
in each application.

The following relationships are then easily found and will be of particu-
lar use, for either g =p or g=p + 1:

ED =E (A
4 pq( ) (23a)
D (A)JE=E (A
[ p( )] pq( ) (23b)
D_(A)][D (B)] = D _(AB
[ p( )11 p( )] p( ) (23c)
[Dp A1 {Dp (B)] = Dp (AB) (23d)
For g =7p
T
EE" =T (-1,21,-1) - J (I 23
p( ) p( ) (23e)
but, for g =p + 1
Eel - T (-1,21,-1) (23f)

As a consequence of equations (23a) and (23b), we find for either g =p or
g=p+ ;i o

14



ED, = [Dp(A)]E (24a)

and from equations (23c) to (23f), along with (2lc), that for ¢q = p:

T
EE D (A)ID_ =T (-I 1) -
+ [ p( )] s p( ,21,-1) Jp(l) + Dp(AB)

T (- -1 - 24b
p( 1,C,-1) Jp(I) (24b)

T '
EE D (A)]D T (-1 -0 -1 (I D'
+ [ p( )] 5 p( »21,-1) p( ) + p(AB)

Tp(—l,o,—l) + DZ;(C) (24c)

and for g =p + 1l:

EET 4 (D, (A1 = T (-1,C,-1) (24d)

SIMPLEST FORMULATION OF MATRIX EQUATIONS, AND MOTIVATION
FOR ALTERNATIVE VERSIONS

Consider as the simplest and most straightforward formulation of equa-
tions (3) the case where the mesh is as shown in figure 2(b) except that the
circles are removed from the row of circled v symbols in the mesh row
k = n. That is, values of u are specified at k' =n; (y = y,), but v 1is
not specified at k = n.

Define
g = hy/hx (25)

and assume for the formulation in this section that at and ¢~ 1in equa-

tions (3) are zero. Then, with the definitions in equations (4) to (8),
equations (3) become

h

P0G T M) T P T Ve T 0k (262)

+ u. + B(w. -h w, (26b)

Ui T % ke PR TSI Y (X

for all 4 1 tom and k =1 to n. (The value of m is arbitrary, but
ny =n+ 1=2L yn L i int This is i for the di i

1 n where 1s an integer. 1s 1is 1mportant for the discussion
of the most efficient cyclic reduction of the equations that result later.)
Equations (26) are second-order accurate. With all specified boundary values
of uj,k and vj x (as indicated in fig. 2(b), except as noted above) moved to

15



the right sides of equations (26), denote the resulting right side of equa-
tion (26a) by fj x and the resulting right side of equation (26b) by 97, k-
Then with the vector and matrix definitions in the above section and with

B. .=8_.=28 (except 82,1 = 0) 27)

and

p=q=n (28)

the complete set of finite-difference equations (26) for all j,k can be
written as

7 blocks n blocks

A T S IRES f,
|

A S S B U, f,
]

1 ° (o) : .
(

Al -1 I U, f,

————————— T B N I (29)

]

0 -1 . 1 B A g
|

. . I ., E .
i

o) -1 B \ g,

or, more concisely,
T,

DU-EV=tf (30a)
EU + DV = g (30b)

Thus, equation (30a) represents the entire set of continuity equations (26a),
and equation (30b) represents the entire set of rotationality equations (26b).

Equations (30) can be reduced by eliminating U. Premultiply equa-
tion (30a) by -E, premultiply equation (30b) by D, (A), add the two resulting
matrix equations, and use the relations (24a) and (24b) to obtain

[Tn(-I,C, -1y - 1 (D]V =F (31a)

16



where

F = COl[Fl,Fz, . e .,Fp] (328.)
= [Dp(A)]g - Ef (32b)

or
F, = Agk + f7< -ty k=1top (32¢)

where, in this case, p = n, and must be defined to be zero when p = g

fp+1
for equation (32¢) to apply; and where the J component of the vector repre-
sented by each product Agk is just Bl,jgj,k - 62,j9j—1,k ( =1 tom,

k =1 to p) in which 82’1 = 0 as in equations (27).

Equation (3la) is a block-tridiagonal equation to solve for V, with the
right side, F, easily obtained from the simple operations indicated in equa-

tion (32¢). 1In an expanded form, the block-tridiagonal equation (31la) is
[ C -1 T er- FFI”
-1 '.. '.. V2 F2
= . (31b)
C -1 .
i . | C—I_ -VhJ _Fn_

Equation (31b) could be solved (ref. 25, p. 68) by a fast, direct elliptic
solver for each vj k, and then the bottom half of equation (29) could be used
to solve for each uj,k. However, the direct solution of equation (31b) is
significantly more difficult than it would be if the entry in the nth column
of the nth row of the block coefficient matrix were C, like all the other
diagonal entries, rather than € - I.

There are two approaches that one can now take. Equation (31b) is in a
form equivalent to that obtained for a Poisson equation with a Neumann condi-
tion specified in a certain way at one boundary (which would result in the
last diagonal entry, € - 1). Therefore, one possible approach is that used by
Sweet (ref. 9) and by Schumann and Sweet (ref. 17) in solving Poisson's equa-
tion: to deal directly with the irregular element of the block coefficient
matrix by developing a separate and more complicated factorization for calcu-
lations during the reduction process involving that element. A different point
of view avoids the additional complication both in the algorithm development
and in the programming. This approach, which had been taken in reference 25
and also is taken here, is to look for simple ways of modifying the problem
formulation so as to obtain a very regular coefficient matrix, with all block-
diagonal elements the same, so that simpler algorithms and programs can be
used. The algorithm versions described in the next three sections deal with
the alternative formulations.

17



VERSION A — ORIGINAL FAST DIRECT CAUCHY~RIEMANN SOLVER

Version A described here is the original version of the Cauchy-Riemann
solver developed in reference 25 and used for fast iterative calculations in
a nonlinear problem in reference 35. The derivation is given here, not only
for completeness in the sequence of development both of algorithms and of
programs, but also because the matrix derivation here is simpler than that
given in reference 25. We also wish to present slightly more detail in the
algorithm and to give the corresponding FORTRAN program for an example
problem.

As explained in reference 25, a modified treatment of the upper boundary
results in a regular block coefficient matrix with all the block-diagonal
elements the same (rather than being different as in eq. (31b)). The modi-
fied treatment changes the last column of the matrix from the form obtained
in equation (31b) (equivalent to a Neumann condition applied to Poisson's
equation in a certain way, as done in refs. 9 and 17) to another form that is
equivalent to a Neumann condition applied to Poisson's equation in a different
way (as done in ref. 5), which is simpler to treat by cyclic reduction. The
modification of the upper boundary to accomplish this was originally derived
by working backward from the desired result. Therefore, the motivation is not
clear at the beginning of the derivationm but becomes clear when a crucial step
in the algorithm development is reached.

Consider the mesh shown in figure 2(a), on which the value of m is
arbitrary and on which the number of y wvalues both for the continuity equa-
tion and for the rotationality equation is #nj = 2L, where the exponent L
is an integer. Note that this is one greater than the dimension # wused in
the previous section where figure 2(b) was used for the illustration. The
rotationality equation is to be applied at the points where u is specified
on the upper boundary, as well as all the points indicated by crosses. With
B defined by equation (25), the assumption of zero values for at and a~,
and with the definitions in equations (4) to (8), equations (3a) and (3b)
become

For g =1tom and k =1 to ny:

B0 T MR T Y T Ve T ok (332)

For j =1 tom and k =1 to n:

i e T BT P i) T (330

However, for the rotationality equation at the upper boundary only (k = n;),

the difference expression for (Bu/ay)j x 8iven in equation (8b) is replaced
by the first-order-accurate expression:

~ 1
(Bu/ay)j,k ~ (uj,k'+1 - uj,k')/(z hy) (34)
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where, as indicated in figure 2(a), Ui kU4l is evaluated on y =y, . Thus,
3

as before, ignoring the distinction between J and ' or k and k' for
indexing, we write

For j=1tom and k = nj:

+ u.

1
7 k1 —h w. (33c)

1 = o
S A TR R W

3,k
Although equations (33a) and (33b) are second-order-accurate representations
of equations (1) at all points, and equation (33c) is only first-order-accurate
at the upper boundary, the applications for which the algorithm is intended
are not significantly affected by the lower accuracy at the upper boundary,
which is assumed to be sufficiently far from regions where any large gradients
of wu and v occur. The factor 1/2 in the denominator in equation (34),
with the resulting factor of 1/2 multiplying B8 in equation (33c), is
crucial for obtaining the desired result. With all specified boundary values
of Us k and Uj,k’ as indicated in figure 2(a), moved to the right sides of

equations (33a), (33b), and (33c), denote the resulting right side of (33a)
by fj,k (=1 tom, k=1 to ny) and the resulting right sides of equa-

tions (33b) and (33c) by gj % (j=1tom, k=1 to n1). Then with the
>
definitions in the section Matrix Deéfinitions and Relations, and with
B. .=B_ .=28 (except 62 1 = o) (35)

and
p=q=n (36)

the complete set of finite-difference equations (33) for all j,k can be
written as

n1 blocks n1 blocks
.—r ‘I' i— — — — —
A I o U, f,
]
A , -1 I U, f,
|
. | . o
1
A -1 I Uﬁ f,
___________ S R A N P (37)
-1 I , B Vi g1
I
(8] -I . i . V2 g2
| . .
- T Iy B . .
(0] I ! % B
= z | ) gnlJ
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or, more concisely,

DU - ETv = f (38a)
EU + DV = 3 (38b)

Equations (38) can be reduced by eliminating U. Premultiply equa-
tion (38a) by -E, premultiply equation (38b) by Dnl(A), add the two result-
ing matrix equations, and use the relations (24a) and (24c) to obtain

[Tnl(—I,O,—I) + D%l(c)]v =F (39a)

where F is defined as in equations (32); but, in this case, p = n;. Again,
since p = q, fp+1 must be defined to be zero for equation (32¢) to be valid.

Equation (39a) is a block-tridiagonal equation for V. If we write it in
an expanded form:

- - - - - -
C -1 \£ F,
-1 . .. Va Fa
N (39b)
.. C -1 : :
- L F
nd I /2 C nd -and L nl-

we can now see the motivation for using equation (33c) containing the factor
1/2 at the upper boundary. By multiplying the last column of m-dimensional
matrices in the block coefficient matrix in equation (39b) by 2 and at the
same time multiplying the last vector element, Vﬁl’ by 1/2, we obtain

[ C -1 7 f' vi]l [F;]
-1 C v, F,
-1 - =1 : (40)
C  -21 v, F,
" -1 ¢ J ;%anj bFnlJ

The block-tridiagonal coefficient matrix now has a form for which the cyclic
reduction is relatively simple for nj = 2L, L being an integer. The cyclic
reduction of equation (40) to obtain all values of v ; 1is adequately
described in reference 25 (pp. 68-72). The values of U k are then obtained
directly from the lower half of equation (37) (i.e., the fotationality equa-
tion for each J,k), from which
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U =%BV _ g (41a)

and

U, =1U

% ka1 + BV

r " B oo (k =n to 1) (41b)
where (see eq. (21b)) the J component of the vector represented by each prod-
uct BVy is just B(Uj,k - Vj+1,k), where vpy, k is set equal to zero for
all k =1 to n; (since it is already included in gj,k)'

A FORTRAN program to solve an illustrative example problem, using sub-
routines corresponding to version A, is described in a later section.

VERSIONS B AND C — FIRST REVISED AND EXTENDED CAUCHY-RIEMANN SOLVER

The motivation for developing version B was the prospect of increased
efficiency over version A. Because version A (as described above) contains a
block-tridiagonal matrix equation to solve that is equivalent to a discrete
Poisson equation with a Neumann condition, the cyclic reduction is less effi-
cient than would be the cyclic reduction of the corresponding equivalent
matrix equation derivable from Poisson's equation with all Dirichlet condi-
tions. The latter is known to require one less cycle of reduction containing
a significant number of operations, in both the forward and backward recur-
sions. Therefore, the objective was to change the condition application at
the upper boundary so that the block-tridiagonal matrix obtained would have
all diagonal blocks the same, as in equation (40), but also have all super—
and subdiagonal blocks the same, as in equation (31b). The revised method for
treating the upper boundary could also alleviate effects of the decreased
accuracy at the upper boundary in version A in problems where those effects
could be significant.

At the time the revised version B was being developed to increase the
efficiency, it was also found, in the studies that were to be reported later
in references 36 and 37, that certain terms needed to be added to the solver
to stabilize the iterations in the fast semidirect iterative method for the
nonlinear, mixed elliptic-hyperbolic problem of transonic flow. Therefore,
the algorithm for version B was extended to include the terms atut + a™u~
in equations (3), with constant values of at and ¢=. This extended algo-
rithm, version C, is the one used for all the calculations made in refer-
ences 36 to 38. Since version B can be regarded as a special case of
version C, the derivations are combined. However, the subroutines for
version B are slightly more efficient than those for C and can be used for
the same problems as version A, where the extra terms are not required.

Consider figure 2(b), on which m is arbitrary and #n; =n + 1 = 2L
with L an integer for the simplest and most efficient cyclic reduction of
resulting equations. Note that on the upper boundary, at k' =#n1 (¥ = yy),
values of u# (circled symbols) are specified. It is also indicated that,
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at a half interval below the upper boundary, at k = n, values of v are
also to be specified. (Such conditions in most physical problems are not
difficult to obtain. For example, in refs. 36 to 38, analytical asymptotic
conditions valid sufficiently far from y =y, were specified for u at

k' =n; and for v at k =n. In the event that values of % and v would
be known only at a single boundary line, y = y,, the discretized continuity
equation could be used to obtain corresponding values of v on k =#n to
specify as input.) As was the case in the previous section for version A,
the motivation for this particular modification of the upper-boundary treat-
ment is not obvious at the beginning since the necessary modification was
originally obtained by working backward from a desired result. After a cer-
tain point is reached in the derivation, the reason for specifying v at

k = n will become clear.

The specification of v on k = n, the crucial feature of this algorithm
that leads to the desired result, allows us to add an unknown, v ,n» Lo the
left side of each continuity equation and to add the correspondlng specified
quantity, denoted by (vp)j, to the right side. Thus, even though we specify
(wp);, we also shall determine Vin as part of the solution algorithm. Also
for Juse in equations (3) with nonzero values of a+ and g, let

Gy 2z -hat, Gy = -ha (42)

and in terms of these parameters, along with B8 defined by equation (25),
let

™
il

B(1 + &2) (except 82,1 = 0)

o]
Il

Then corresponding to figure 2(b), with equation (3a') applied at all the dots
and equation (3b) applied at all the crosses, with the definitions in equa-
tions (4) to (8), we write for all 4j =1 tom and all k =1 to n:

B(1 - al)uj’k - B(1 + uz)uj—l,k + Uj,k - vj,k—l + vj,n = hysj,k + (UT)j (44a)

-U + u + B(v (44b)

. . . -, = -h w,.
gk TR ke PR R TR R R (VI
With an appropriate expression for J k> as in equation (3a), these equations
are second-order—-accurate representatlons of equations (1).

Now, with all specified boundary values of Uik and v ,k as indicated
in figure 2(b) (except vj n) moved to the right sides of equatlons (44),
denote the resulting rlght 51des, respectively, by fb % and g~ Kk (G =1 tom,
k =1 to n). Then with the definitions in the section 'Matrix Definitions and
Relations, and with Bl,j and Bz,j defined by equations (43) and

p=q=mn (45)
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the complete set of finite-difference equations (44) for all Jj,k can be
written as

n blocks @E&mm
A T 0 1 | [u ] [6 ]
1
A - 1 I U, £y
. : . o
]
A : . | I I U,_, fn—l
A : i i} i _.%} i j%z _ f’[
-;} o ; __________ :_ g _______ Vi g1
0 -1 I : B Vv, g
l
(0] -1 1 : B Vy-1 g, ;
0 - ! B \2% g,
(46)

With the additional use in this section of the matrix H,, defined by equa-
tion (16), the more concise formulation of equation (46) is

I
Yy

DU+ (-EY + H )V (47a)

A

EU + DV

5 (47b)

It
L=}

Equations (47) can be reduced by eliminating U. Premultiply equa-
tion (47a) by -E, premultiply equation (47b) by D, (A), add the two result-
ing equations, and use the relations (24a) and (24b) to obtain

[Tn(—I,C,—I) - Jn(I) - EHn]V =F (48)

where F 1is defined as in equations (32) with p = n, and where, since

q =p, fp+1 in equation (32¢) must be defined to be zero. At this point,
the motivation for introducing Vi.n into equation (44a), which resulted in
the term with the matrix H, in equation (47a), becomes evident. The iden-
tity

[E,(DIH, = -3 (1) (49)
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yields, from equation (48),
[T, (-1,C,-D)]V = F (50a)

which is the desired simple and very regular form of the block-tridiagonal
equation for V:

€ -1 T V)] 'Flw
-1 C . v, Fj
N (50b)
. . -1 . .
L -1 A I nJ Ly

Version C uses cyclic reduction of equation (50b), with the matrix C
defined by equations (21lc) and (21d), where B1,7 and B, ; are defined by
equations (43). Version B is for the special case where &; and &, in equa-
tions (43) are zero. The cyclic reduction process for obtaining all values of
Vi k from equation (50b) is slightly different from that used in version A
and is described in appendix F. The values of uj k are then obtained
directly from the lower half of equation (46), from which

U =1UU + BV, - k=n,n-1, . . ., 1) (51)

k k+1 kT~ Bk

where Uy4; 1is set equal to zero, and where the j component of the vector
represented by each product BVy is just B(vj x - vj+1,k) with vy, x set
equal to zero for all %k = 1 to n (since it is already included in gj,k)'

FORTRAN programs to solve the illustrative example problem, using sub-
routines corresponding to both versions B and C, are described in a later

section.

VERSIONS D AND E — SECOND REVISED AND EXTENDED CAUCHY-RIEMANN SOLVER

For current and future applications of a fast direct Cauchy-Riemann
solver, it is desired to apply conditions on v on the horizontal centerline
of the mesh (by methods beyond the scope of this report). It is therefore
desired to have the upper and lower boundaries symmetrically located above
and below the centerline and to have the same type of boundary condition
applied at both boundaries. We therefore consider the mesh configuration
shown in figure 2(c), on which boundary values of v are specified on the
upper and lower boundaries, u 1is specified on the left, and v on the right.

There is a further motivation for pursuing the formulation for the con-
figuration in figure 2(¢). One quickly observes that each column of dots
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contains one more point for the continuity equation to be solved than the
number of crosses in a column of the points for the rotationality equation.
Correspondingly, one observes that the number, g, of unknown values of u
in a vertical column is also one more than the number, p, of unknown values
of wv. Thus, in equations (11),

g=p+t+t1 (52)

If one then recalls the formulations in previous sections (e.g., eq. (29)),
he notes that the quarter partitions of the block coefficient matrix are
square because g = p there. Consider that the number of rows of mxm
matrices in the upper partition of equation (29) is g (the number of U
vectors), whereas the number of rows in the lower partition is p (the number
of Vi vectors); the number of columns in the left partition of the coeffi-
cient matrix must be ¢, whereas the number of columns in the right partition
must be p 1in order for the indicated matrix multiplication to be defined.
Thus the upper left partition has block dimension ¢xg, the upper right gxp,
the lower left pxg, and the lower right pxp. Recalling also the identity
(24d), we have an indication that the simplest and most regular coefficient
matrix after reduction may be obtained quite naturally for ¢q =p + 1,
whereas it was not obtained naturally (i.e., without the tricks used for
versions A, B, C), for example, in the section Simplest Formulation of Matrix
Equations, in which it was assumed that the number of rotationality equations
was the same as the number of continuity equations (p = q), and all block
matrices other than vectors were square. Thus, the simplicity of the matrix
in the identity (24d) (with the implied corresponding high efficiency of the
algorithm that would result) encourages the pursuit of the formulation cor-
responding to figure 2(c) with nonsquare matrices.

Versions D and E of the extended Cauchy-Riemann solver are derived here
as a single algorithm for the mesh in figure 2(c). Version D is the special
case with constant coefficients, at and q~, in the extra terms (aTut + a~u™)
in equation (3a), whereas version E allows coefficients that are arbitrarily
variable in 2.

Figure 2(c) requires
P =7, g=ny=n+1 (53)

This requirement, with »n; = 2L (L, an integer), will result in a matrix
equation for which the cyclic reduction is simplest and most efficient. The
value of m, as in the other versions, is arbitrary.

For use in equations (3), let at and a~ be defined, respectively, at
the same points as ut and = in figure 1(a). To use the indexing notation
of figure 1(b), then, let

a, . =-hat, a
- ‘

1,7 —hxa_ (54)
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and in terms of these parameters, along with B defined by equation (25), let

1,5 - B —ay o)

™
H

(55)

) (except B = 0)

B(1l + o 2,1

Z,j Zsj_l

™
n

Then corresponding to figure 2(c), with equation (3a') applied at all dots
and equation (3b) applied at all crosses, with the definitions in equa-
tions (4) to (8), we write

For all 4 =1 tom and all k =1 to ny:

_ - - = ! 56
8(1 al,j)uj,k B(1 + a2,j—1)uj—1,k + vj,k vj,k—l hysj,k (56a)

For all j =1 tom and all k =1 to n:

+ u, + B(v. (56b)

_u. —_—

7.k T % e P TR R e
With an appropriate representation of 53,k as in equation (3a), these equa-
tions are second-order-accurate representations of equations (1).

With the specified boundary values of u- ,k and v,k indicated in
figure 2(c) moved to the right sides of equatlons (56), denote the resulting
right sides, respectively, by Fi,k (J=1tom, k=1 to n;) and 97,k
(j=1tom and k =1 to n). Then with the definitions in the sectlon
Matrix Definitions and Relations, and with B; ; and 82 . defined by equa-
tion (55), the complete set of finite-difference equatlons (56) for all
values of j,k indicated can be written as

ny blocks 7n blocks
o~ S 7 — e ] ]
A o 0 EE
l
A -1 I U, f,
|
) | -1 0
x
A | I Uﬁ fn
|
A -1 8) f
I o nq (57)
—————————————— ' — -— — —_— — — [ — — — -— —— —_— —_— — —
-1 I | B Vl g1
!
0 -1 I : B Vv, g,
!
. |
0 1
| "I | B B —Vn- i gn;




or, more concisely,

it
-

D,U - ElV (58a)

EU + Dgv

it
ua

(58b)

Note that, in this formulation, E and ET are nonsquare and Dy and Dg are
square but of different block dimensions (see eqs. (22)).

Equations (58) can be reduced by eliminating U. Premultiply equa-
tion (58a) by -E, premultiply equation (58b) by D,(A), add the two resulting
equations, and use equations (24a) and (24d) to obtain directly the simple
and very regular form of the block-tridiagonal equation for V:

[T,(-1,C,-1)]V = F (59)

where F is defined as in equations (32) with p =m#n, ¢ = n;. (In this
case, there is no special condition on f,,1 as there was in the cases where
E was square.) The expanded form of equation (59) is identical to equa-
tion (50b), except that in this case C has been allowed to have variable
elements (eqs. (21c¢c) and (21d) with (55)).

Version E of the solver uses cyclic reduction of equation (59). Ver-
sion D is for the special case where : and A F-1 in equation (55) are
constants. The cyclic reduction process %or obtalnlng all values of vJ k
from equation (59) is described in appendix F.

The procedure for obtaining the Uy after all Vi are known is somewhat
different from the previous versions since k ranges from 1 to #n for Vk
but from 1 to n; for Ug. After U,,L1 is determined, the lower partition of

equation (57) (i.e., rotationality equations) can be used to obtain the
remaining Ug:

Up = Vg T BV~ 8,

tk=n,n-1, . . ., 1) (60)
in which the J component of the vector represented by each product BVy
is B(Uj k = Vj+1, k) with Uml,k set equal to zero for all %k (since it is

already included in g7 k) To obtain U, . Dbefore equation (60) is used,
several different approaches can be taken Let us refer to these as options
(a), (b), (c), and (d) and consider them in detail. For option (a) to
determine U”l’ we use the bottom row of the upper partition in equation (57),
that is, the continuity equation for the top row of dots in figure 2(c):

AU -V =f (61a)
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or

— (
Uu. . + v, + f. 61b
Jsny Bl,j Bz,g J=1,7 Jsn fb,nl) ( )

for G =1 tom (with uc,nl set equal to zero since it has been included in
fl n Y. Because some difficulty has been encountered and studied in use of
s’
1

this option in version D of the solver, it has not been included in version E
with variable Bl,j and Bz,j- Therefore, for discussing the nature of the
difficulty, we consider only the case (i.e., version D only) where

Bl,j = Bl = B(l - al)
(62)
Bz,j = B, = B(1 + az) (except 82’1 = 0)
with B8, and 82 as constants. Further, let
w. = u,
:7 d!nl (63)
r.=v. +
J J,?’Z ft79n1
and write equation (61b) as
Ble - Bzwj—l = rj (=1 tom) (64a)
in which wy = 0 or, equivalently, as
W, -w, =O=-Dw, +=n. (=1 tom) (64b)
J Jg-1 J=1  B1 g
where
A = Bo/B1 (65)

This is a common form of difference equation, which can be studied by standard
techniques in stability theory to determine that the equation is stable if

IA| <1, i.e., |82/81| < 1. 1In fact, the difficulty encountered was traced

to an instability in the determination of the Ui, ng by this option only

when the values of R; and B, were chosen so that [B,/8;] > 1.

Because of the stability difficulty with option (a) in these cases,
further options were considered that find the Ui without using the top
bl rs

row of continuity equations on the mesh in figure 2(c). Option (b) is to just
specify each Ujmys in the step of the algorithm before equation (60) is

used, as
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uj,nl = (uT)j (G =1 tom) (66)
where (“T)j is obtained from some analytical representation such as an asymp-
totic boundary condition evaluated at each J and at k' = n; in figure 2(c).
Options (c) and (d) use, instead, different variants of the rotationality
equation to replace equation (56b) for application at points on Y = yy

(fig. 2(c)) halfway between the v input points and directly above each of
the interior u points (i.e., at %k = n;, all j). For these two options,

let (up); be the respective values of u specified at these points on

Yy = Yy, and denote 3u/dy at these same points by (Bu/By)T,j. Option (c)
will use a first-order-accurate expression for (au/ay)T . to replace the
difference approximation given in equation (8b) that resdulted in the rota-
tionality difference equation (56b). Similarly, option (d) will use a dif-
ferent second-order—accurate approximation for (au/ay)T . The first-order-—

accurate expression, to replace (Bu/ay)j r &iven by eqﬁation (8b), at
3

k =mny, is
2,0~ o5, 00

Thus, for option (c), the replacement for equation (56b) rearranges to

+ 1y (G =1 tom) (68)

1
Uu. = (u +—6<v w .
1 (T),j 2 2 Ty g,ny

. - V.
Jdsn Jdshni J+1 9”1)

For option (d), the second-order-accurate expression, to replace (Bu/ay)j k
given by equation (8b), at k = n;, is ’

(%)T,j ) [S(uT)J' T P Y “j,n]/(%y) (69)

The resulting replacement for equation (56b) is

8(u,,). - Yu. + u. - 38(?. - V. ) = -3h w. (70)
( T)J Jsny Jsn J+1,m Jsn1 Y Jsni

Before equation (70) can be solved for Uj p,»> One must eliminate Ui n

This can be done by adding equation (70) to (56b) written at k = n:

-, + u. + B(v. -
YL ( dJd

V. =
Jdsn s/t] N z7+1 ’n)

-h w.
Yy Jd.n
to obtain, after rearranging,
U, = (U, +és(v. - v, )+i8(u. - v, )
J 5”1 T4 8 J " J+l,m, 8 J s J+l,m
1 .
+=h (éw. + w, ) (=1tom 71)
8 Yy Jdsn1 d N J ) (

which is the equation used to evaluate Ui, my for option (d) before equa-
tion (60) is used in the algorithm.
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FORTRAN programs to solve the illustrative example problem, using sub-
routines corresponding to both versions D and E, are described later.

EXAMPLE PROBLEM FOR ILLUSTRATION

To illustrate the use of the variants and extensions of the Cauchy-
Riemann solver, and as a basis for a complete sample program to be given for
each version, consider the same problem used in reference 25. The sample
programs can be used to determine such factors as computing times required
for significant portions of the calculations and accuracy of the numerical

results.

The problem is the small-perturbation formulation for steady, irrota-
tional, incompressible, inviscid flow over a thin symmetrical parabolic-arc
biconvex airfoil aligned with a uniform stream far from the airfoil. This
problem has a simple mathematical formulation and the analytical solution
is available for comparison with numerical results. Also, the problem has
the interesting property of containing singularities, which should be captured
by the numerical solution. The problem formulation and programs also consti-
tute a basis for extensions to the more complex problems of nonlinear subsonic
and transonic aerodynamics (refs. 35 to 38).

In Cartesian coordinates (x,y), let U and V be the respective com-
ponents of velocity. For the classical small-perturbation approximation, let

U= Uw(l + tu) , V=U_r1v (72)

where u and v are then dimensionless scaled perturbation velocities, v,
is the uniform velocity at infinity, and 1 is the small thickness ratio of
the airfoil. If these expressions are substituted into the governing gas-
dynamic conservation equations, the resulting equations for u(x,y) and
v{(x,y) are the Cauchy-Riemann equations:

ou v _
o + oy 0 (73a)
ou U
oy w 0 (73b)

Let both &« and y be normalized by the chord length of the airfoil and let
the x axis be along the chord and the Yy axis be the perpendicular bisector
of the chord. Then the biconvex-airfoil surface y = yz(x) is given by

yb(x) = iT(% - sz) , (_-%-< x <-%) (74)

In thin-airfoil theory, the condition of flow tangency at the airfoil surface
y = yp(x) is transferred to y = 0 by use of Taylor's series (see, e.g.,
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ref. 43), The first-order, thin-airfoil result for the boundary condition is
then

w(2,04) = dy,/dv  in (- %< z < %)
or
+y = . 1 1
v({x,0T) = -4 in - §-< x <-§ (75a)
=0 for Ix] >-% (75b)

The condition of uniform flow at infinity requires that
u,v > 0 as x2% + y2 > o (76)

The analytical solution to equations (73) with conditions (75) and (76) (see
table A.2 of ref. 44, p. 21), in terms of the complex variable 2z = a2 + iy,

1s
w-dv =2 {1 -z zn[—z * Ei;gg]l 77

from which, at y = 0,

_ 4 x + (1/2)
u(x,0) = - [1 x QHIE—:—717§Y (78)
Note from conditions (75) that v has a discontinuous jump at both the leading
and trailing edges (le = 1/2) and, from equation (78), that u goes to

negative infinity there.

For the computational problem, because of symmetry we consider only the
half-plane y 2 0 and use conditions (75) at points along the computational
boundary y =y, = 0. For the outer boundaries, we let y =y,, & = xy, and
x = x,, define the boundary lines where conditions are to be applied and con-
sider using either u = u,(x,y) or v = v,(x,y) as the conditions to be
applied there, where u, and v, are the analytical expressions obtained from
the real and imaginary parts of the exact solution (77). With these exact
solutions applied on the outer boundaries, replacing the asymptotic condi-
tions (76), the illustrations will not be affected by errors due to approxi-
mate methods for applying conditions at infinity. However, one could also use
zero perturbations (u = v = 0) on the outer boundaries as approximate condi-
tions, and this option is allowed for in the programs described in the next
section. Therefore, let us denote the outer boundaries (xy,x;,,yY,) as B and
denote the conditions there as

u = uB(x,y) or v o= vB(x,y) on B (79)
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where wup may be either u, or 0 and vp may be either v, or 0. The
choice of whether to specify up or vp at points on a section of B
depends on which version of the algorithm described previously is used.
Furthermore, in versions B and C, where (vT)- must be specified at a half-
interval inside the upper boundary, (vT)j can be obtained from the function
vg(x,y); in versions D and E, in which (up); must be specified either at a
half-interval inside the upper boundary for option (b) or on the upper
boundary for options (c) and (d), (uT)j can be obtained from the function

ug(x,y) »

To test and illustrate all versions of the algorithm, including those
with the extra terms in equation (3a), using this example problem governed by
equations (73), let us represent equations (73) by the finite-difference equa-
tions (3) with the notation defined in equations (4) to (8) and with s and w
equal to zero, so that, in equations (3a) and (3a'):

g'(+) = a+u; + a u, (80)

in those cases for which at and @~ are not zero. Therefore, for version C,
the term 83 r in equation (44a) is
b

1 - _Q= _ -
hysj,k = Baz(uo%j—l,k Bal(uo{j’k (81a)
and for versions D and E, in equation (56a),
hs' = - L) - ;
ySJ,k BaZ,J—l( %51 % Bal’J(uOZj,k (81b)

where u, 1is the exact solution defined above.

To summarize the numerical example problem for illustration, the differ-
ence equations approximating the partial differential equations (73) are
equations (3) with (80) represented by equations (81) for the algorithm ver-
sions with the extra terms; the boundary conditions are the discretized
applications of equations (75) on y =yy, = 0 and of equations (79) on
X = Xgy X=Xy Y = Yy with the choice of whether # or v 1is specified
on any section of B depending on the algorithm version being used.

After the example problem is solved by any version of the algorithm, it
is of interest to determine u on y = 0 (which approximates the airfoil-
surface velocity for -% <ax <% in thin-airfoil theory). Since u on
y = 0 is not determined directly in the solutions obtained on the meshes in
figure 2, a second-order-accurate representation of the rotationality equation
can be applied on k = 0, with one-sided y differencing, analogous to equa-
tion (70) used in versions D and E for k = n;. The rotationality equation
can be arranged to obtain (ref. 25):

uj’o = (l/8)[9uj’1 - uj,z + BB(vj,o - Uj+1,0) + 3hywj,0] (J =1 tom) (82)
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(in which Uj,o 1is the value at k = 0 rather than at k' = 0). 1In this
example problem, of course, wi o = 0 in equation (82).

FORTRAN PROGRAMS AND RESULTS FOR THE EXAMPLE PROBLEM
USING VERSIONS A TO E OF CAUCHY-RIEMANN SOLVER

The purposes of this section are (a) to describe FORTRAN programs, listed
in appendices A to E, for solving the simple example problem outlined in the
above section, using versions A to E of the Cauchy-Riemann solver and (b) to
describe results of calculations for the example problem.

FORTRAN Program Descriptions
The FORTRAN programs are written for use on a Control Data 7600 com-
puter. Slight modifications would be required for use on most other com-

puters that have FORTRAN compilers. Each program consists of a main program
and three subroutines, as listed in table II. The last letter of the name of

TABLE II.- PROGRAMS AND SUBROUTINES

UBIClA UBIC1B UBIC1C UBIC1D UBICLE
CALCD1 CALCD CALCD CALCD CALCD
CR2N1 CR2DUV CR2UVC CR2UVC CR2UVE
GE2N1 GE2N1 GE2N2 GE2N2 GEUVE

the main program denotes the version of the Cauchy-Riemann solver used; thus,
UBIClA is the main program to solve the example problem for the biconvex air-
foil using version A of the solver. The subroutine CALCD used with versions B
to E computes the quantities dQ,M (eqs. (F7) in appendix F). The correspond-
ing computation in version A is done by subroutine CALCDl. The subroutines
CR2DUV, CR2UVC, and CR2UVE perform the cyclic reduction as outlined in appen-
dix F for versions B, C, D, and E. The subroutine CR2N1 performs the version
of cyclic reduction described in reference 25 for version A. Within each of
the subroutines for cyclic reduction, another subroutine is called to solve
tridiagonal equations using the Thomas algorithm (e.g., see ref. 45) for
Gaussian elimination. The slightly different subroutine versions for this
algorithm are named GE2Ni, GE2N2, and GEUVE.

The use of these partially modular forms of the programs, with separate
subroutines to perform major steps in the program, is not the most efficient
but is best for understanding, modifying, and adapting the programs.

Timer- Each main program includes the use of a timing subprogram from the
CDC-7600 program library that returns the CPU time T in seconds (from the
start of the job) either by the statement CALL SECOND(T) or, for example, by
CPU=SECOND(T). This subprogram is used to measure three times in each main
program: Tl is the time for all preliminary computations, excluding input,
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before the cyclic reduction; T2 is the time for the cyclic reduction to be
completed (determination of V after F is known); and T3 is the time
required to obtain U after V is known. When the program is used on other
computers, all statements containing the FORTRAN variables TT1, TT2, T1, T2,
and T3 should be removed or appropriately replaced.

FORTRAN parameters and variables- Before further description of the pro-
grams, it is convenient to list in table III some FORTRAN parameters and
variables that either are used frequently or are special and that correspond
to the indicated equivalent algebraic quantities. For this we note that,
since FORTRAN does not permit the index zero in an array, the FORTRAN indices
J and K, for example, are shifted by one from the values of J and k. The
variable J may represent either JU or JV in table III and the variable K
may represent either KU or KV in the same sense as j and k are used above
as indices to represent, respectively, either j or J' and either k' or k.

Statement functions- At the beginning of each main program, statement
functions are included to determine X = XJU(J) or XJV(J) and Y = YKU(K) or
YKV(K) from equations (4) (see table III). Statement functions are also
given for the exact analytical solutions for u and v, UEX(X,Y) and VEX(X,Y),
which include within the statements the additional statement functions
RHO(X,Y) and ANPHI(X,Y). The functions UEX and VEX represent the real and
imaginary parts of equation (77). 1In addition, version E contains the state-
ment functions F1(JU) and F2(JU), which are arbitrarily specified functions
to represent aj and 0 s respectively, in the test calculation.

Computation of boundaries- Because of the staggered mesh, in some cases
it is most convenient to specify nominal values of g, %,, and y,, and then
compute final values of those parameters for which convenient mesh intervals,
hp and hy, are obtained. For this reason, after the nominal values are input,
and mjy and n; are input, %, and %, are obtained from equations (9d) and
(%9e), then equations (9a) and (9b) or (9c) are used to determine the final
xg, Z,, and y,, taking into account the fact that it is desired to have
x: = -0.5 (as given by eq. (4a)) coincide with the leading edge of the airfoil
at some J = JLE. This computation is done just after the input is read at
the beginning of each main program.

Input- As indicated near the beginning of each main program, versions A,
B, and E each require only one input card per case (READ statement labeled 2
with corresponding FORMAT statement labeled 1), and versions C and D require
two input cards per case (READ statements labeled 2 and 104 with corresponding
FORMAT statements labeled 1 and 103). In each program, the first (or one only)
input card format for each case requires the following specifications:

NEX Integer in column 5. Specification is arbitrary and superfluous unless
NX is specified as some integral power of 2 (NX=2**NEX). 1In the latter
event, specify NEX equal to log,NX.

NX Integer, right-justified at column 10: Mesh number for &« direction,

equal to mjp. Specify integer ranging from 4 to 128. (Recommended
values either have a factor of 10 or are a power of 2; see table I.)
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FORTRAN

Ju

Jv
KU

2R EE3

NEY
XL, XU
YL, YU
XJU(J)
XIV(J)
YKU (K)
YRV (K)
HX, HY
U(J,K)
V(J,K)
UEX(X,Y)
VEX(X,Y)
BETA
BETAL
BETA2
ALPHAL
ALPHA2
A

Al
ALFA
ALFA1L
GAMMA
DELTA
ALF(J)
BET(J)
GAM(J)
VT (J)
UT(J)

Algebraic
Jg+ 1

J' + 1

k' + 1
k+1

my, m+ 1
n, n+1
my + 1

ny +1

L

X X,
2° Tu

yz’ yu

T,
d

A
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ykl
Yy
hx, hy
Ytk
Vi, k!
uO (x,y)

Vo (X,y)

1,4

2,J
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2° Yo,

B
B
B
a

TABLE III.-~ FORTRAN SYMBOL DEFINITIONS

Reference equation

Reference page
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(4b)
(4b)
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NEY Integer in column 15. Since NY is always an integral power of 2
(NY = 2*%*NEY), specify NEY equal to log,NY.

NY Integer, right-justified at column 20: Mesh number for Yy direction,
equal to n;. Specify integral power of 2 (NY=2**NEY) with NEY ranging
from 2 to 7.

On this same card, as described in the previous subsection (see table III for
correspondence between XL and xy, etc.), nominal values are specified for
XL, XU, YL, and YU. The values have E fields of width 10 and are right-
justified, respectively, in columns 30, 40, 50, and 60. Recommended values
for the example problem are, respectively, -1.E0, 1.EO0, 0.EO, and 2.EO0. (For
the example problem as formulated, YL 1is always 0.E0.) The same input card
in all the program versions also requires specification of the FORTRAN
parameter NBC in column 65 as follows:

It

1 results in the outer boundary condition being specified as the exact
analytical solution;

NBC

2 results in zero values being specified for the conditions on the
outer boundaries.

In addition to the above parameters, which are all specified on the first
(or only) input card for each case, the following parameter options apply as
indicated:

LASCAS = 0 causes the program to return, after a case has been run, to the
first READ statement for a new case;
= 1 causes the program to end; should be specified for last case in a
job.
NUBDRY = 0 in program D, specifies option (a) (eq. (61b)) for determination

of uj,nl;
= 1 4in programs D and E, specifies option (b) (eq. (66)) for uj’nl;

= 2 in programs D and E, specifies option (c) (eq. (68)) for uj,nl;

3 in programs D and E, specifies option (d) (eq. (71)) for Us -
b

ALPHA1l and ALPHA2 are arbitrarily specified numbers in programs C and D except
that, to keep the difference equations elliptic, require both (-~ < a; < 1)
and (-1 <3, < w) and, in addition, to keep the calculation stable for the
option NUBDRY = 0 in program D, require also I(l + a5)/ (1 - &1)] < 1.

In programs A and B, LASCAS is an integer in column 70; in program E, it
is in column 75; in programs C and D, it is in column 25 of the second input
card for each case. The integer parameter NUBDRY is in column 70 of the first
input card for each case in programs D and E. The parameters ALPHAl and
ALPHA2 for programs C and D are specified with E fields of width 10 and are
right-justified, respectively, at columns 10 and 20 of the second input card
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for each case. For convenience, table IV summarizes the input card and
column locations for the input parameters.

TABLE IV.— INPUT CARD AND COLUMN LOCATIONS FOR INPUT PARAMETERS
(Column of right-justification)

v P — ~
Input b E Q § é E E
parameter: % E = E '>_]< E g E % f} % i 23
Version A
column 5 10 15 20 30 40 50 60 65 70
Version B
column 5 10 15 20 30 40 50 60 65 70
Version C
card,
column 1,5}1,10{1,15}{1,20| 1,30 (1,40 1,50 1,60 |1,65]| 2,25 2,10 | 2,20

Version D
card,

column | 1,5|1,10|1,15|1,20|1,30 |1,40 |1,50|1,60|1,65]|2,25 1,70 2,10 2,20

Version E
column 5 10 15 20 30 40 50 60 65 75 70

Note that the arbitrarily specified statement functions F1(J) and F2(J)
determine a; . and ap,4 1in program E, so these quantities are not input for
version E; théSe specifications are easily changed by simply replacing F1(J)
and F2(J) in the main program by suitable statement functions. These speci-
fications should satisfy (-» < a; »<1) and (-1 < ay, s <) at all j in

. ) sd
as<g<m.

Outline of programs- The FORTRAN programs have the following major steps
(see listings in appendices):

1. Specify DIMENSION and COMMON statements.
2. Specify statement-function declarations.
3. Read input as described in above section.
4. Calculate xy and 2y, (and Y, 1in versions B and C) from the nominal

input values.
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5. Calculate needed parameters.
6. Calculate (UT)j in versions B and C (see p. 22).

7. Initialize interior values of fj,k and g; Jk (to zero for version A;
to (vT) plus the right side of equation (81a) for“versions B and C; to the
right 51de of equation (81b) for versions D and E).

8. Calculate needed boundary values of u and v.
9. Calculate (uT)j in versions D and E.

10. Complete the determination of fb ; and 9;. % by "modifying the
fringes'" to include the boundary values of "« and v (see definitions of fb k
and 93,k for each version; e.g., p. 19).

11. Set appropriate boundary values of Us and vJ k to zero as
required by the reduction algorithms,

12. Determine each F.; 4 (denoted FO in the program listings) accord-
ing to equations (32) as deSéribed for each program version.

13. -Determine needed values of dz m (egqs. (F7)) by calling either CALCD
or CALCDI.

14. Determine B; and B; (A and Al; see table III above) in all versionms
except E (in which these quantities are in the array BET(J), included under
step 5 above).

15. Perform cyclic reduction according to the algorithm outlined in
appendix F for versions B to E or in reference 25 for version A (call sub-
routine names beginning with CR in table II) to obtain all unknown values of

vj,k.
16. Determine all Ui k by procedure described previously for each

version.

17. Reload boundary values of Uik and vJ % that were previously set
3
to zero.

18. Print as output, for appropriate values of j and k: J, K, X and Y
(for U), U, X and Y (for V), V, UEX and VEX evaluated at same points as U and
V, and ERRU, ERRV, which are the differences between U and UEX and between V

and VEX.
19. Print T1, T2, T3.

20. Print values of Ui o calculated from equation (82) along with
values of V7,0 and the exact solution for comparison.
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21. For convenience in plotting the exact solution for u# on y =0
near the leading- and trailing-edge singularities, also calculate and print
values at small intervals near these edges.

Results

The results of computations for the illustrative example problem of the
biconvex airfoil include, in particular, plots of the computed values of
u on Yy = 0 versus x, compared with the analytical solution, and the comput-
ing times.

For this example problem, there is very little difference in the results
for u on y = 0 computed by the different program versions, A to E, with
the same input conditions, and for any of the options (a) to (d) in version E.
The very small differences are virtually indistinguishable on a plot such as
shown in figure 3, for which the results were computed with NX = 40, NY = 32,
NBC = 1, the nominal values of xy, x,, Y3, and y,, as recommended above, and
with various values of &7 and G, in versions C and D. For these input
parameters, the mesh intervals £, and h are, respectively, 0.05 and 0.0625.
The outer computation boundaries are at or about 1/2 chord length upstream
and downstream from the airfoil edges and 2 chord lengths above the airfoil.
Because of the discontinuous conditions on v at the airfoil edges,

(x,y) = (¥0.5,0.0), the analytical perturbation solution for wu goes to
negative infinity there. These singularities are captured well by the numer-
ical algorithms and, even on the relatively coarse mesh used for figure 3, the
values very near those points are accurate.

. von y=o, discrete boundary
condition
O U ony=o0, numerical solution
— —-— v ony=o, analytical boundary
condition
u on y=o, analytical solution

Figure 3.- Perturbation velocities for thin parabolic-arc biconvex airfoil
(NX = 40, NY = 32, exact conditions on boundaries).

The computing times Tl, T2, and T3, as described under the subsection
"Timer," are listed in table V for various meshes and for all program ver-—
sions A to E. Note that, when used in an iterative calculation such as
described in the Introduction and the section that follows it, no significant
part of the time Tl would be done more than once (at the beginning of
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the program). Thus, since T3 << T2, the only time of real significance for
practical applications is T2. As one example, we see that the time T2 for the
cyclic reduction using version C for NX = 40, NY = 32 is 16 msec. In refer-
ence 37, it was noted that the direct solver for this case required only

14 msec. The difference is due to the fact that a special tridiagonal-
solution subroutine that takes advantage of the vector capabilities of the
CDC-7600 was used for the quoted slightly lower time. (The time saving was
much more significant when a previous version of the FIN compiler was being
used, before the FIN 4.4 version indicated in table V became available.)

TABLE V.- COMPUTING TIMES FOR BICONVEX ATRFOIL USING VARIANTS OF
CAUCHY-RIEMANN SOLVER ON CDC-7600
(FIN 4.4, OPT = 2 Compiler)

Version of NX NY Tl, sec T2, sec T3, sec
program
A 10 8 0.005 0.001 0
20 16 . 006 .005 0
40 32 .009 .022 .001
60 64 .013 .076 . 004
100 128 .025 .287 .011
B 10 8 .001 .001 0
20 16 .002 . 004 0
40 32 .005 .015 .001
60 64 .010 .056 .003
100 128 .025 .218 .010
C 10 8 .002 .001 0
20 16 .009 .003 0
40 32 .032 .016 .001
60 64 .092 .058 .003
100 128 .299 .223 .010
D 10 8 .002 .001 0
20 16 . 009 .003 .001
40 32 .032 .016 .001
60 64 .092 .057 .003
100 128 .296 .223 .010
E 10 8 .003 . 001 0
20 16 . 009 .003 0
40 32 .032 .018 .001
60 64 .092 .062 .003
100 128 .299 . 240 .011
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User's Choice of Algorithm Versions

To aid the prospective user in selecting which version of the algorithm

to use, we note the following features:

(1)
(2)

(3)

(4)
(5)

(1)
(2)

(3)

(1
(2)
(3)
(4)

1)
(2)
(3)

(1)
(2)
(3)

Version A:

solves the nonhomogeneous Cauchy-Riemann equations;

uses a grid that is nonsymmetrical in both « and y (conditions on u
imposed on left and top, v on bottom and right);

has a potential source of errors at the upper boundary due to first-order
accuracy of the difference equation there;

is the least efficient of the algorithm versions;

was used for iterative computations in reference 35.

Version B:

solves the nonhomogeneous Cauchy-Riemann equations;

uses a grid that is nonsymmetrical in both « and y (conditions on u
imposed on left and top, v on bottom and right);

is the most efficient version for the simplest nonhomogeneous Cauchy-
Riemann equations with the nonsymmetrical grid.

Version C:

solves extended nonhomogeneous Cauchy-Riemann equations, with the extra
terms having constant coefficients;

uses a grid that is nonsymmetrical in both x and y (conditions on u
imposed on left and top, v on bottom and right);

is the most efficient version with extra terms (constant coefficients)
and the nonsymmetrical grid;

was used for iterative computations in references 36 to 38.

Version D:

solves extended nonhomogeneous Cauchy-Riemann equations, with the extra
terms having constant coefficients;

uses a grid that is symmetrical in y (conditions on u dimposed on left,
v on top, bottom, and right;

is the most efficient version with the symmetrical grid.

Version E:

solves extended nonhomogeneous Cauchy-Riemann equations, with variable
coefficients in the extra terms;

uses a grid that is symmetrical in y (conditions on u imposed on left,
v on top, bottom, and right);

is the only version presented having variable coefficients in the extra
terms.
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CONCLUDING REMARKS

Revised and extended versions of the original Cauchy-Riemann solver of
reference 25 have been presented, including detailed derivations of the
algorithms, as well as descriptions and listings of FORTRAN computer programs.
These programs are believed to be simple and adaptable enough to be useful to
nonspecialist users.

The results of the computations for the simple example problem are
believed to demonstrate significant efficiency, accuracy, and potential
utility of the algorithms.

In addition to the previous applications of the original and the first
revised and extended Cauchy-Riemann solvers in semidirect iterative methods
for the simplest transonic-flow calculations that have been described in
references 35 to 38, it is anticipated that the newest version, version E,
will be useful for more general applications in tramnsonic-flow calculations,
including lifting airfoils. The Cauchy-Riemann solvers are sufficiently
general that further significant applications can also be expected in other
fluid-dynamical problems, as well as in broader areas of mathematical physics.
It is expected that further extensions of these methods in the future, to
include variable meshes and three dimensions, will also be worthwhile.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, December 16, 1976.
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APPENDIX A

FORTRAN LISTING OF EXAMPLE PROGRAM AND SUBROUTINES FOR
ORIGINAL CAUCHY-RIEMANN SOLVER, VERSION A
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C MAIN PROGRAM, UBICIA76 FDR CDC 7600
C+++ SOLUTION OF CAUCHY-RIEMANN EQS. BY CYCLIC RFDUCTION FOR INCOM. FLOW
c OVER THIN BICONVEX AIRFCIL. AIRFOIL CHORD 1S FROM X=-,5 TO +,5.
c
c THE METHOD AND THE PROGRAM ARE DFSCRIBED IN NASA TN D-7934
c BY E. De MARTIN AND H. LOMAX.
c
DIMENSIDON U{129,130),V(129,130])
COMMON NEX ¢ NXyNEY NY,BETS0,A,A1,ALFA,ALFAL 4K,V
c
XJUTJU) = XL + HX*FLOAT(JU-1)
YKUIKU) = YL + HY*{FLOAY{KU)-1,.5)
XJVI{JV) = XL + HX*{FLOAT(JV)-1.5)
YKVIKVR = YL + HY*FLOAT (KV-1)
RHN{X,Y) =  SQRTILIX+.5)%%2 + YRY)/((X-,S)**2 + YxY))
ANPHT (X,Y) = ATAN2(Y,X-.5) — ATAN2{Y,X+.5)
UEX{X,Y) = FCTR*(1, - X¥ALOGIRHN(X,Y}) = Y*ANPHI(X,Y))}
VEX({XeY) = FCTRA{YXALDG(RHOIX,Y) )= X*ANPHI(X,Y))
C
FCTR = 4.,/3.14159765
1 FORMAT {415, 4F10.0,215)
2 READ{S,1) NEX NXyNEYSNY XL XUsYLsYUNBC,LASCAS
CALL SECDMDITT1)
C THE INPUT VALUES OF XL AND XU ARE NOMINAL VALUES, USED TN
C COMPUTE THE FXACT VALUFRS.

HY (YU - YL)/FLOAT(NY)
HX (XU - XL)/FLOAT(NX)
JLE = 1,005 + [-.5 — XL)}/HX

XL = =.5 - HX*(JLE - 1)
XU = XL + HX*{NX - .5)
JM = 1 + NX

KM = 1 + NY

KMP2 = KM + 2

BETA = HY/HX

BETSQ = RFTA**2
C++#+ INITIALIZF IMNTERIOR VALUES NF MASS SNURCFS AND VORTICITY [ F 1S
c EQOUIV. TN V AND G IS FQUIV. TO U}-—-
DO 3 K = 1,120
DO 4 J = 1,129
VIJK) = 0,
UlJyK) = 0.
4 CONTINUE
3 CONTINUE
C++++ LOAD ROUNDARY VALUFS OF U AND V-—

c TF MBC IS 1, LOAN EXACY U AND V3 IF NBC IS 2, LDAD U=0 AND V=0 FAR
C FRNM AIRFOIL.
K = KM ¢+ 1

N0 S5 J = 2,NX
viJ,1) = 0.
X = XJviJ}
IF (X¥XLEea25001) VIJsl)= =4 %X
IF {ARS{X*X-.25).LT.1.E~5) VIJ,1) = .5%v(J,1)
IF (NBC.FN.1) U{J,K) UEX{XJULII,YU)
IF {NBC.EQ.2) UI(lJ4K) 0.

5 CONTINUE

DO 6 K = 24KM
IF INBC.EN.2) GO TN 33
UT14K) = UEXIXL,YKU(K))
VIJM,K) = VEXIXU,YKV(K]))



C+++

10
C+t+

12
n

CH+++

16
15

C+t+

G0 TO 6

Uli1,K) = O.
VIJMyK) = 0.
CONTINUE

MODIFY FRINGES NF INTERINR TO INCLUDE BNUNDARY VALUES--
DO 7 J = 2,NX
VEJs2) = VIJe2) + VIJ,1)
I sKM) = ULJI,KM) = ULJ,KM + 1)
CONTINUF
DO 8 K = 24NY
VI2,K) = V{2,K) + BETA*U({1,4K)
UIMX oK) = UINX,K)} + BETA*V{JM,K)

CONTINUE
K = KM
VI24,K) = V(2,K)} + BETA*U(1,X)
UINXyK) = UINX,K) + 5kBETAXVIJIM, K}
ZERN APPROPRIATE AOUNDARY VALUES--
K = KM + 1
NN 9 J = 1,J4M
UlJeK) = 0.
ViJyK}) = O.
viJy1) = 0.
CONTINUFE
DO 10 K = 1,KM
VIIM,K) = 0.
yt1,K) = 0.
V(IYK) = Q.
CONT IMUE

NEXT DETFRMINE VECTOR FO.
DO 11 K = 2.,KM
DO 12 J = 24NX
VI(JeK) = VIJyK) = VIJ,K+1) + BFETAR(UII,K)Y — NTJ=1,K))
CONT INUF
CONTINUE
CALL CALCDL1INFY)
A = 2.%(1. + BFTSO)

T1 = SECOND{(TT1Y - TT?2
CALL CR2N1
T¥2 = TT1
T2 = SECOND(TT1) - T72
NOW V IS DETERMINFD FOR J = 2 TO MX AND K = 2 TD MY+1,
NEXT DETERMINE 1) FNP THF SAME J AND K,
RETK = L5%RBETA
NN 15 KR = 2,KM
K = KMP2 - KA1
IF (K .LT.KM) RETK = RETA
NN 16 J = 2,NX
U{JsK) = ULJ,K+1) = U{JI,K) + BETK*{VIJ,K) — VIJ+1,K))
CNNT INUE
CONTINUE
772 = 771
T3 = SECOND(TT1) - TT2
RELOAND BOUNDAPRPY VALMES NF Uy AND V,

IF NBC IS 1, LOAN EXACT U AND V3 TF NBRC TS 2, LNDAD U=0 AND V=0

FROM AIRFOTL,
K = KM + 1

FAR
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46

17

34

18
19

20

21

23

26

27

35
36

28

29

DN 17 J = 2.NX
viJ,1) = O.
X = XJviJ)
IF {X*X.LF.a25001) V(Jsl )} = =4.%X
IF (ABS(X*X-.’.S).LTOIQE-S, V(JVI’ = .S*V(J,l,
IF (NBCLEQ.1) UlJ,K]} UEX{XJU(J),YU)
IF INBC.ER.2) U{J,K) O.
CONTINUE
DO 18 K = 2,KM
IF (NRC.EQ.2) GN TO 34
Ul1,K) = UEXIXL,YKUIK))
VUIJIM,K) = VEXIXU,YKVIK))
G0 70 18
Utl,K) = 0,
VIJM,K) = 0,
CONTINUE
FORMAT (1H1*SOLUTTION OF CAUCHY-RIFMANN EQS. BY CYCLIC REDUCTION, */
1% INCOMPRESSTIBLE FLOW NVER THIN RICNONVEX AIRFOIL. CHORD IS FROM X=
2-+5 TO +.5%//% NBC=%,13,%, {IF NBRC IS 1, EXACT BC'S ARE IMPOSED
3FAR FROM ATRFQOIL: VF NBC IS 2, U AND V ARPE ZFERD ON OUTER BDUNDARY.
4x//
5% NX=*,I3.*, NY=*,I3,*’ XL=*,F10.6.*, XU=*.F10.6,*, YL=*,F10-61
6%y YUk FlOuebyky HX=%oE1S5,T 9%k, HY=%,F15,T9y*%//9%Xy1HJ 33X, 1HK,6X,
T3HXIUy TX93HYKU s8X s 1HUy RX93HUEX s 8X s 4HERRU S 11 X3 3HXJIV y TX$3HYKV, 8X 4 1 HY
858Xy 3HVEX, 8X, 4HERRV )
WRITE(6419) NBC o NX NY XLy XU, YL, YUyHX 4 HY
FOPMAT (66X 2T144F11.643F10,64F15.T79F11.643F10.6,F15.7)
KI = NY/16
IF (KT.EQ.0) KT =1
IF (NX-2%¥%XNEX.EQ.0) GO TO 21
JI = NX/20
G 7O 22
JI = NX/16
IF (JI1.EQ.0) JI =1
FARMAT{1X)
NN 24 K = 1,KM,KT
WRITE(6,23)
YA = YKU(K)
YB = YKV(K)
DN 25 J = 1,JM,J1
XA = XJutd)
XB = XJVIJ)
IF (J.EQaJMLDR.KeEQeL) 6O TO 26
UEXA = UEX({XA,YA)
UA = U(J,K)

G0 TO 27
UEXA = 0.
UA = 0.

IF {J.EQ.1) G0 7O 2R

IF (K,NE.1) G0 TO 35

IF (ABS{XB%XB-,25).GF.1.,E-5) GO T0O 35
VEXR = 0,

GO TN 36

VEXB = VEX{XR,YB)

VB = V{J,yK)

GO TO 29
VEXR = 0. -
VB = 0.

FRRU = {JA - UEXA



25
24
30

38

39

40

42

46

47
45

48

ERRV = VR - VEXB
WRITE(6,520) JyK XAy YA,UA,UEXA,ERRU,XB,YB,VR,VEXB,FRRY
CONT INUE
CONTINUE
FORMAT(//% Tl=%,F12.%9% SECaey T2=%,F12.44*% SEC.y T3=%,F12.4,% SEC,
1%*)
WRITE(6,30) T1,7T2,73
FNRMAT{///% VELOCITIES AT Y = 0Q.%)
FORMAT(//26X 3 1HS y 6X93HXIU10X91HU»13X93HUTX 311X 3HX IV 910Xy 1HV,y 13X,
13HVEX/ /)
FORMAT (23X 93 144F114642E15.79F11.642F15.7)
WRITEL6,38)
WRITE(6,39)
DB 42 J = 2,NX
XA = XJutJ)
XB = XJVv{J)
UEXA = 0.
VEXB = Q.
IF (ARS(XA*XA-.25)GEeleF=5) UFXA = UEXIXA,0.)
IF (XBAXR L Eee?5001) VEXR = —4,%XB
VB = viJ, 1)
Ua = 0e125%(9 . *U{Jy2)-U(Jy 3V 43 %RFTAX(VII,1)-VI(J+1,1)))
WRITFE({6,40) JoXA,VA,UEXA,XR,VR,VEXB
CONTINUE
WRITE(6,45)
DELTX = L,1%*HX

X = —=e5 = 1.1%HX
N =20
N=N+1

IF (N.FQe2) X = o5 = 1l.1%HX
WRITE(6,23)
NOD 47 T = 1,21
X = X + DELTX
UEX1 = 0.
VEX1 = 0.
IF (ARSIX*®X—,25).0E.1.E~5) UFX1 = UEXIX,0.)
IF (X%X.LF.e25001) VEX1 = ~4.%X
WRITE(£,48) X, UEX1,VFX1
CONTINUE
IF {(NL.EQ.1) GO TN 46
FORMAT (//% EXACT VELNCITIFS AT EDGES.#//729%, 1HX, 11X, 3HUFX, 12X, 3HVE
1X)
FORMAT (23X, F10.864 2F15.7)
IFf (LASCAS.EQ.0) GN TO 2
sToP
END

SUBROUTINE CALCDI INEY)

DIMENSIONS OF D(L,M) ARE LMAX = NEY AND MMAX = 2%%| MAX.
DIMENSION DI(7,128)

COMMON/DC/D

LMAX = NEY

D(1,1) = SQRT(2.)

D{1,2) = -D(1,1)
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20
30

Ce+++
C

Ct+sr

—

48

DO 30 L = 2,4,LMAX
MMAX = 2%%|
MMAXH = MMAX/2
MMAXHL = MMAXH + 1
o0 10 M = 1,MMAXH
N{LyM} = SORT(2.+ DIL-1,M))
COMT INUE
DO 20 M = MMAXH1,MMAX
MM = M - MMAXH
DLy M) = =D(L,MM)
CONT INUE
CONTINUE
RETURN
END

SUBRDUTINE CR2N1
ROUTINE TO SOLVE RY CYCLIC REDUCTION A BLNCK-TRINDTAGONAL
MATRIX EQUATIODN WITH A NFUMANN-LTIKE COMDITION IN 2 DIMENSIONS,

PIMENSION V(129,130),D(7,128),DUMI129)
COMMON NEXo NXyNEY NY,RETSQyA, Al sALFA, ALFAL,K,V/DC/D

JM = 1 + NX

KM = 1 + NV

LMAX = NFY

FORWARD RFCURSINN--FIRSYT L FVEL IS L=1.
KH = KM

Eps = 1.,

N1 K = 31KH72
DO 2 J = 24NX
VIJdyK) = 2.%V(J,K)
CONT INUF
ALFAL = Al
ALFA = A
CALL GE2N1
IF (K,EQ.KM) EPS = 0,
DO 3 J = 24NX
VIJeK) = VIJsK) + VI{JyK=~1) + EPSkV{J,K+1)

CONTINUE
CONTINUE
DO 4 L = 2,LMAX
NH1 = 2%%{1-2)
NH2 = 2%NH1
NH3 = 2%NH1
NH4 = 4%NH1
KL = NH4 + 1
KH = KM
IFPS = 1
DO S K = KLyKH,NH4

IF (K ,EQ.KM} IFPS = 0O
FPS = FLOAT(IEPS)

K1l = K = NH1

K12 = K + NHIX*IEPS



10

11

14

ce
CONT

BACK
L =
K =
NH2
NH4
K21
DO 9

K21 = X - NH2
K22 = K & NH2%IFPS
K31 = K = NH2
K32 = K + NH3*IEPS

DO 6 4 = 24NX
DUMIJ) = VIJK)
VIJeK) = 2%VIJ,K)I-VI{JyK11) 4V (J,K21)-VIJ,K31)
+EPS*{~-VIJ,K12)+V(J,K22)-V(J,K32))
CONTINUE
DO 7 M = 14NH2
ALFA1 = Al + DI(L-1,M)
ALFA = A + DI(L-1,M)
CALL GEZ2N1
CONT INUE
DD 8 J = 2,NX
VIJ,K) = V{Jp,K) + DUMIJ) = VIJ,KI1) + VIJ,K21) + EPS*{-V(J,
K12) + ViJ,K22))
CONTINUE
NT INUE
INUE

WARD RECURSION-- DEFINE NEW INDEX, LB = LMAX-L+1 = NEY-L+1l.
LMAX
KM
2%¥(L-1)
2%NH2
K-N42
J = 2yNX

DUMII) = VIJ.K)
CONTINUE

DN 10 M

At
AL

= 1,NH4
FAl = Al + D(L,M}

FA = A + DIL,M)

CALL GE2N]
CONTINUF

no t
vi

1 J = 2,NX
JeK) = 2%V (J,K) + DUMII)Y - VIJ,K21)

CONTINUE

po 1
L

2 LB = 2,LMAX
= LMAX - LB + 1

MH2 = 2%¥{{-11}

NH
KL
KH
K1
bn

4 = 2%NH2

NH4 + 1

KM - NH4
2%NH4&

= KL sKH K1Y
-~ NH2

NH2
NH&
NH4

29 NX
ViJd,K)
VIEJeK) + VIJyK4l) + VIJ,K42)

W

13
K21
K22
K4l
Ké?2
DD 14

DUM{J)

viJ,K)
CONTINUE
DO 15 M = 1,NH4

ALFAl = Al + DIL,M)

ALFA = A + DL, M)

+

WX
CRXRX

o+

Wou
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16
13
12

13

17

by

50

CALL GE2N1
CONTINUF
DD 16 3 = 24NX
VIJsK)Y = VIJeK) 4+ JS5%(DUMII) = VIJ,K?21) - V{J.K22))
CONTINUE
CONT INUE
CONTINUE
DO 17 K = 24NVY,2
DN 18 J = 24NX
VIJsKY = VI{JyK) + VIJWK=1) + VIJ,K+1)
CPNTINUE
ALFAl = Al
ALFA = A
CALL GF2N1
CNNTINUE
RE TURN
END

SUBROUTIME GE2NI1

ROYTINE TO SNOLVF BY GAUSSTAM FLIMINATION THE TRIDIAG. FQey
TI-BETSQ,ALFA,-BETSQI*V = F (WITH THE FIPST NIAG, FLEMENT PEPLACED
BY ALFAl), WHFPE V AND F ARF 2-DIMENSTONAL.

IN THE PROGRAM, V AND F ARF EQUIVALENT,

DIMENSION V(129,130),5(129)
COMMON NEXy, NXyNEY NYsPETSO.AyA1,ALFALALFAL,LK,V

ALFALY = 1./ALFAL
RETSQI = 1./RETSQ
ALFR = ALFA/RETSO
S{2) = —ALFALlI*RFTSO
V{2 4K) = VI2,K)*ALFALT
DO 1 J = 3,4NX
€{J) = -1./(ALFR + S{J-11)
VIJeKY = =SUJVHIBETSQTI*VIJ,K) + VIJ-1,K})
CONTYNUE

FOR RACKWARD SWFEP, DEFINE NEW INDEX, JR = NX+2-~J,
NXPP = NX + 2
00 2 JB = 2,NX
J = NXP2 - 43
VIJsK) = VIJ,K) — STII*VI+]1,4K)
CONTINDE
RETHRN
END



APPENDIX B

FORTRAN LISTING OF EXAMPLE PROGRAM AND SUBROUTINES FOR FIRST
REVISED CAUCHY-RIEMANN SOLVER, VERSION B
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MAIN PRNGRAM,URBIC1IB76 FNR CNDC 7600

SOLUTION DOF CAUCHY-RIEMANN EQS. FOR TNCOMDR, FLOW OVEP THIN BICONV
ATIRFOIL USING VFRSION B OF CAUCHY-PIEMANN SDLVER,

ATRFOIL CHORD IS FROM X==.5 TO +.5.

THE METHOD AND THE PROGRAM ARE DESCRIBFD IN NASA TN D-7934
BY E. Do MARTIN AND H. LOMAX,

DIMENSINON U{129,129),V{129,130),VT(129)
COMMON NEX 9 NX 3 NFY ,NY,BETSQe Ay ALy ALFA,ALFAL,K,V

XJUlJu) = XL + HXIFLDAT(JU-1)

YKUIKU) = YL + HYX{FLOAT(KUI-1.5)

XJVIJVY = XL + HX*={FLNAT(JV)-1.5)

YKVIKV) = YL + HY*FLOATI(KV-1)

RHN{X,Y) SQRTI{{X+.5)1%%2 + YRYJ/ ((X=,5)*%? + YxY))

ANPHI(X YY) = ATAN2{Y ,X—=,5) — ATAN2{Y, X+,5)

UEX(XyY) = FCTR*{1. - X*¥ALOG(RHO{X,Y)) - Y®ANPHI(X,Y))
VEX{XsY) = FCTR¥{YXALNGARHNIX,Y) )~ X*ANPHI(X,Y))

FCTR = 4./2,14159265

FORMAT(415,4F10.0,2715)

READIS 1) NEX NXsNFYyNY X! XU, YL,YU,NBC ,LASCAS

CALL SECOND(TT1)

THE TNOPUT VALUES OF XL,XU, AND YU ARE NOMINAL VALUES, USED 7O
COMPUTE THE EXACT VALUES.

HY = (YU - YL)/FLCATINY)
YU = YL + HY®([NY - .5}
HX = (XU - XL)/FLOAT(NX)

JLE = 1.005 + (-.5 - XL)/HX

XL = =o5 = HX*{JLF - 1)
XU = XL + HX#(NX - .5)
JM = 1 # NX

KM = 1 + NY

NY P2 NY + 2

RETA = HY/HX
RETSO = RFTAXX?
CALCULATE v=VT{J} AT K=NY,
Y = YKVINY)
010 101 J = 2,NX
X = XJvlyJ)
IF (NBC.FN.7) GO TN 102
VT{J) = VEX(X,Y)

GO TN 101
vT{J) = 0.
CONTTINYUE

INITIALTZE INTERIOR VALUES NF MASS SOURCFS AND VNRTICITY (F IS
EQUIV. TN V ANN G TS EQUIV. TN U)—-
DO 3 K = 2,NY

nn 4 ) = 2,NX

VIg,K) = VT (D)
UlJdsK) = 0.
CONT INUE
CONTINUE

LOAD BOUNDARY VALUES NF 13 AND V--

IF NBC IS 1, LDAD FXACT 1 AND Vi IF NBFf IS 2, LOAD U=0 AND V=0 FAR
FROM ATRFNTL,

K = KM
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C++e

C+e+

10
CA++

12
11

C++t

16
15

OO S5 J = 24NX
ViJ,1}) = 0.
X = XJdvty)
IF [(XkXeLE2a2%5001) VUJ,1)= —4.%X
IF (ABSIX#X—-o25).LT41.E-5) VIJ,1) = .5*ViJ,1)
IF (NRC.EQ.1) UlJ4K) UEX{XJUL J) s YY)
IF (NBC.EQ.2) UlJK) 0.
CONTINUE
DO 6 K = 2,4NY
IF (NRC.FQ.2) GN TO 23
ULl sK) = UFXIXL,YKIIK))
VIIM,K) = VEXIXU,YKVIK))

G 7O 6

Ul1,K) = 0.

VIIMK) = 0.
CONTINUE

MODYFY FRINGES OF INTERINR TO INCLUDE BOUNDARY VALUFES—-
DN 7 J = 24NX
V(Js2) = VIJ,2) + VJ,1)
UtJeNY) = HLJyNYY - UlLJ,KM)
CONTINUE
PN 8 K = 2,NY
V(24K) = VI2,K) + BETAXU({]1,K)
UINX,K) = U(NX,K) + BETAXV({JIM,K])

CONTINUE
ZER APPROPRIATE BOUNDARY VALUES--
K = KM
Do 9 J = 1,JM
UtJ,K) = 0.
V(JIK) = 0.
Vids1) = 0.
CNONT INUE

DO 10 K = 1,KM
V(JM'K' = 0

Ull,K) = 0.
V{l,K) = 0.
CONTINUE

NEXT DETERMINE VECTOR FO.
DO 11 K = 2,4NY
NN 12 3 = 24NX
VIJyK) = VIJyK) = VIJyK+1) + BETAR(UIINK) - U(J-1,K))}
CONTINUE
CONT INUE
CALL CALCD(NEY)
A = 2.,%(1. + BETSQ)
Al = 2, + BETSO
T¥2 = TT1
Tl = SECOND{TT1) - T72
CALL CR2DUV
T72 = TT1
T2 = SECOND(TTLY - 772
NOW V IS DETERMINED FNR J = 2 TD NX AND K = 2 TO NY.
NEXT DETERMINE U FORP THE SAMF J AND K.
DO 15 KB = 2,NY
K = NYP2 - KB
DD 16 J = 24NX
UGJeK) = UlJsK+1) = ULJIHK) + BETAR(VIIHK) = VIJ+1,K))
CONT INUE
CONTINUE
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17

34

18

19

20

21

23

26

27

T2 = TT1
T3 = SECONDITT1) - TT2
RELDAD BNOUNDARY VALUES NFf U AND Vv,
IF NRC IS 1, LOAD EXACT U AND V3 IF NBC IS 2, LOAD U=0 AMD V=0 FAR
FROM AIRFOIL.
K = KM
DD 17 J = 24NX
ViJs1l) = 0.
X = XJvidd
IF (X*X.LFea?5001) VI(Jyl )} = =4,.%X
IF {ARS{X%X=225)elTelaE=-5) VIJ,1) = S%*VIY,1)
IF (NBC.FQ.1) UlLJ,K) UEX{XJUutJ), Yy
IF (NBC.EQ.2) UlJ,K) 0.
CONTINUF
DO 18 K = 2,NY
IF (NBC.EQ.2) GO TN 34
H{1,K) = UEX{XL,YKU(K))
VIIM,K) = VEX{XU,YKVIK))
N Tn 18
Ul{l,K) = 0.
VIJIM,K) = 0.
CONTINUE
FORMAT(1HI *SOLUTINN OF CAUCHY-RIFMANN EQS. BY CYCLIC RFDUCTION,
1VERSION R.*/
1% INCOMPRFSSIBLE FLOW OVER THIN BICONVEX ATIRFNIL. CHORD IS FROM X=
2=-+5 TO #.,5.%//% NBO=%,T3,%, (IF NMRC IS 1, FXACT BC'S ARE IMPOSED
3FAR FROM AIRFOTIL; IF NBC IS 2, U ANDN V ARE 7FRN ON NUTER BOUNDARY,
4%/ 7/
5* NX=*1139*' NY=*,!‘3'*, XL=*1F10.69*1 X1J=*'F10.6,*' YL=*,F10.61
6%y YU=%R,F10,6,%, HX=%4E15.T9%y HY=Xk 3 EL1S5 T 9% .%/ /79Xy 1HI 93X, 1HK,6X,
T3HXJU s TX e 3HYKU,y 8X 9 1HUy 8X 9 3HUEX y BX s 4HERRU,11X,3HXJIVy TX43HYKV,8X,1HV
By 8Xy3HVE Xy 8Xs4HERRV)
WRITE(6s19) NBC yMXaNY s XL o XU YLy Y HX  HY
FORMAT(6Xy 214 9F11e6+3F10.69F15.73F11.643F10.6,E15.71)
KI = NY/16
IF (KI.EQ.0) KT =1
IF {(NX-2%%NEX,EQ.0) G TO 21
JI = NX/20
GO TO 22
JI = NX/16
IF (JI.EQ.0) JT =1
FORMAT (1X)
DO 24 K = 1 ,KM,KT
WRITE(6,423)
YA = YKU(K)
YB = YKVIK)
DO 25 4 = 1ydM, 41
XA = XJUuilJ}
X8 = XJViJ)
IF (J.EQ.JMNRK.FOL1) GO TD 26
UEXA = UEX{XA,YA)
UA = U0J,K)
GO0 ™ 27
UEXA = 0.
A = 0.
IF (J.EN,.,1) GO TD 28
IF {K.NF,1) GO TQ 35
TF (ABS({XR%XXR~-,25).GF.1.E-5) GN TO 35



35
36

28
29
25

24
30

3R

39

40

42

46

47
45

48

VEXR = 0O,

GO TO 36

VEXR = VEXIXPR,YBR)
VR = VI{J,K)

GO TC 29

VEXB = 0.

vB = 0.

ERRI) = UA - UEXA
FRRV = VR - VEX8

WRITELG6+20) JyKyXAyYAL,UAL UEXA,ERPULXB,YBy VR, VEXR, ERRYV

CONTINUF
CONT INUFE
FORMAT(//% Tl=%,E12.4¢% SECey T2=%,FE12.4,% SEC., TA=%,E12.4,% SEC.
1%)
WRITF(6,3D) T1,T2,73
FORMAT(///* NELOCITIES AT Y = O.%)
FORMAT (/726X 3 1H] y X3 3HXI, 10Xy IHU9 13Xy 3HUFX 311X,y 3HX JV 410X, 1HV 413 X,
13HVFEX/ /)
FORMAT (23X 9 T4,F11.692F15.7+F114642E15.71
WRITE(6,38)
WRITEF(6,39)
PN 47 J = ?24NX

VEXR = 0.
TF (ABS(XA*XA-.25).CEL.1.F-5) UFXA = UEX{XA,0.)
IF (XR¥XB.LF.a?8001) VEXR = ~-4,.%XB
VB = V{J,1)
UA = 0.125%(0, %010 J,2)~UlJy3) 43, %RETAX(VIJ,1)=-V(I+]1,1)))
WPITE{6,40) Jy XAy UA, UEXA,XR,VR,VFXR
CONTINUF
WRITE(6445)
DELTX = 1#%HX

X = —e5 = 1lo1%HX
N =0
N=N+1

IF (NLFQL2) X = o5 = 1.1%HX
WRITE(6,23)
nn 47 1 = 1,21
X = X + DELTX
Urx1 = 0.
VEX1 = O.
IF {ABSIX.kX=,25)eGFelaF=5) UEX1 = UEX(X,N.)}
IF (X*XLFee25001) VFX1 = —4.%X
WPITE(6,48) X,UEX1,VEX]
CONTINUE
IF (N.EQ.Y1) GO TO 46
FORMAT(/ /% EXACT VELOCTTIES AT EDGFS%//29X, LHX 911X 4 3HITX, 12X,y AHVF
1X)
FORMAT(22XyF10.642E15.7)
IF {LASCAS.ED,0) GND 7N 2
sSTOP
END
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SURPOUTINE CALCDINEY)
C DIMENSIONS OF D{L,M) ARE LMAX=NEY-1 AND MMAX= 2*%*LMAX.
DIMENS ION D{6464)
COMMON/DC/ D
LMAX = NEY -1
D{l,1) SQRT(2.)
D(1,2) -Ntl,1)
DO 20 L = 2,LMAX
MMAX = 2%%|
MMAXH = MMAX/2
MMAXH]I = MMAXH + 1
DN 10 M = 1,2MMAXH
D(L,M) = SQRT(2.+ D(L-1,M))
10 CONT INUE
DD 20 M = MMAXHL,MMAX
MM = M — MMAXH

DIL,MY) = ‘D(L,MM'
20 CONT INUE
30 CONTINUE
RETURN

END

SUBROUTINE CR2DUV
ROUTINE TD SOLVE By CYCLIC REDUCTION A BLOCK-TRYDIAGONAL EQUATION

C
C FOR USF IN URICIR,
C
DIMENSTION VI{129,130),N{6,64 ),NUM(129)
COMMDON NEX,NXyNEYNY,BETSQ,A,A1,ALFA,ALFAl,K,v/DC/D
C
JM = 1 + NX
KM = 1 4+ NY

LMAX = NEY -1
C+++ FORWARD PECURSION--FIRST LEVEL IS L=1.
KH = NY - 1
DN 1 K = 3 4KHy2
DO 2 J = 2,NX
V(J’K, = ZQ*V(J'K,
CONT INUE
ALFAl = Al
ALFA = A
CALL GE2N1
DN 3 J = 2,NX
VIJeK) = VIJIsK} + VIJ,K=-1) + VI{J,K+1)
CONTINUE
CONTINUFE
DO & L = 2,LMAX
NH1 2%% (1L -2)
NH2 2%NH1
NH3 3%NH1
NH 4 4XNH1
KL = NH4 + ]
KH = KM - NH4
DN 5 K = KLyKHyNH4
K11 K = NH1
K12 K + NH1

~N

-

L}



8

5

4
c

Ctes

14

15

16
13

18

17

K21 = K = NH2
K22 = K + NH2
K31 = K - NH3
K32 = K + NH3
DO 6 J = 2,4NX
ouUMLy) = VUIJ,K)
VIJoK) = 2,8 IJyKI=VIJ,K11)+V(J,K21)-V(J,K21)
1 =VIJsK12)4+VIJ,K22)-VIJ,K32)
CONT INUF

00 7 M = 1,NH2
ALFAl = Al + DI(L-1,M)
ALFA = A + D{L-1,M)

CALL GE2N1
CONTINUE
DD 8 J = 2,NX
VIJeK) = V{JeK) + DUMIIY - VIJ,K1I1) + V(J,K21) ~-viJ,
1 K12) + VIJ,K22)
CONTINUE
CONT INUF
CONTINUE

BACKWARD RECURSTON-- DECINF NFW TNNDEX, LB = LMAX-L+1 = NFY-L.
DN 12 LB = 1,LMAX

L = NEY - LB

NH2 = 2%%*(L-1)

NH4 2%¥NH2
KL = NHé + 1
KH = KM - NH4
KI = 2%NH4
DN 13 K = KLyKHyKT
K21 = K = NH?
K22 = K + NH?2
K41 = K — NH4
K42 = K + NH&G
DO 14 J = 24NX
opuMi g) = V{J,K)
VIJsK) = VUIyK) + VIJ,KEL)Y + VIJ,K4E2)
CONT INUFE

DO 15 M = 1,NH4
ALFA1l = Al + D(L,M)
ALFA = A + DL, M)
CALL GF2N1
CONT INUE
DO 16 J = 2,.NX
VIJsK) = VIJyK) + 5x(DUMLY) - VIJ,KP1) - VIJ,K22))
CONT INU®T
COANT INUE
CNONTINUE
DO 17 K = ZyNY’Z
DD 18 J = 24NX
VIJeK)Y = VIJIsK) + VIJ,K-1) + VIJ,K+1)
CONT INUE
ALFAL = Al
ALFA = A
CALL GFE2N1
CONTINUE
RETURN
END
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AOON

58

SUBRNUTINE GE2N1

ROUTINE TO SOLVE BY GAUSSIAN FLIMINATION THE TRIDIAG. FQ.,
T{-BETSQ,ALFAL-RETSQ)I*V = F {WITH THE FIRST DIAG. ELEMENT REPLACED
BY ALFAl), WHERE V ANTD F ARE 2-DIMENSTONAL.

IN THE PROGRAM, V AND F ARE EQUIVALENT.,

DIMFNSICON V(129,130),S(129)
COMMDN NEX,NXyNFEY,NY,BETSQ,A, AL, ALFA,ALFAL,K,V

ALFALT = 1./ALFAL
RETSQYI = 1./RETSQ
ALFB = ALFA/BETS(
S(2) = —-ALFAlI*RBRFTSQ
V{24K) = VI{2,K)¥ALFALTY
nno1 4 = 3,NX
S{J) = =1./(ALFR + S{J-1))
VIJ4K) = =SUJI*{BETSOIRVJyK) + V{J-1,K))
CONTINUE

FOR RACKWARD SWEEP, DEFINE NEW INDEX, JB = NX+2-J,
NXP2 = NX + 2
P02 g8 = Z4NX
J = NXP2 - 4R
VIJ,KY = VIJsK) = S{I)RVII+1,K)
CONTINUFE
RETUPN
FND



APPENDIX C

FORTRAN LISTING OF EXAMPLE PROGRAM AND SUBROUTINES FOR FIRST
REVISED AND EXTENDED CAUCHY-RIEMANN SOLVER, VERSION C

59



+
+
-+

OO0 N

103
104

MAIN PRNGRAM, UBICIC FOR CDC 7600
SOLUTION OF CAUCHY-RIEMANN EQS. FOR INCOMPR. FLOW DVER THIN BICONV
AIRFNIL USIMNG VERSION C OF CAUCHY-RIEMANN SOLVER (WITH EXTRA TERMS
AIRFOIL CHORD IS FROM X=-,.5 TO +.5.

THE MFTHNOD AND THE PRNGRAM ARE DFESCRIBED IN NASA TN D-793%
BY E. De MARTIN AND H. LOMAX.

DIMENSION U(129,129),V{129,130),VT(129)
COMMON NFX o NXyNEY ,NY,BETSQyA9ALl,ALFA,ALFAL,K,V
COMMNDN/COEF /GAMMALDELTA,GD,DELTAT

XJULJU) = XL + HX*FLOAT(JU-1)
YKU{KU) = YL +# HY*[FLOAT(KU)~1.5)
XJVIIVY = XL + HX¥(FLDAT(JV)I-1.5)
YKVIKV) = YL + HY*FLDAT{KV-1)

RHNIX,¥) = SQRTI({X+.5)%%2 + YXY)/{(X-,5)%%2 + Y*Y))
ANPHI{X,Y) = ATAN2{Y,X=.5) — ATAN2{(Y,X+.5)

UEX{X,Y}) = FCTR*(1., - X*¥ALOG{RHO{X,Y)) — Y*ANPHI{(X,Y))
VEXIXyY) = FCTR*¥{Y*ALOGI(PHOIX,Y)} )= X¥ANPHT (X,Y)})

FCTR = 4,/3.14159265

FORMAT(415,4F10.0,15)

READ(5,41) NEXyNX sNEY 4 NY XLy XU, YL, YU,NBC

FORMAT{2E10.0,15)

READ(5,103) ALPHA1, ALPHAZ2,LASCAS

CALL SECOND(TT1)

THE INPUT VALUES OF XL,XU, AND YU ARE NOMINAL VALUES, USED TO
COMPUTF THFE EXACY VALUES.

HY = (YU = YL)/FLOAT(NY)
YU = YL + HY*(NY - ,5)
HX = (XU - XL)}/FLOAT{NX)

JLE = 1,005 + {(-.5 — XL)/HX

XL = =,.5 = HX*[JLF - 1)

XU = XL + HX*{NX - .5}

JM = 1 + NX

KM = 1 + NY

NYP2 = NY + 2

BFTA = HY/HX

RETSQ = BETA®¥2

BETAl = BETAX*{l. -~ ALPHAl}
BETA2 = BETA¥{1. + ALPHA2Z)
BETAR =-RETAXALPHAL

BRETA4 =-BETAXALPHA2

GAMMA = -B8ETA%BETA?

DELTA = -BETA%RETA]L

GNh = GAMMA/DELTA
DELTAY = 1./DELTA
CALCULATF V=VT(J) AT K=NY.
Y = YKVINY)
DO 101 J = 2,NX
X = XJvidJ)
IF {NBC.EQ.2) GO TO 102
VTUJ) = VEXIX,Y)

GO v0O 101
VT(J) = 0.
CONTINUE

INITIALIZE INTERIDR VALUES OF MASS SOURCES AND VORTICITY (F IS
EQUTV. TO vV AND G IS EQUIV, TO U)--



33

C+e+

C+++

10
CHas

12

DD 3 K = 2,NY
Y = YKU{K)
X1 = XL
UEX1 = UEX({X1l,Y)
DO 4 J = 2,MNX
X = XJulJd)
UtJ.X) = 0.
UEXX = UFEX{X,Y)
VIJeK) = VTLJ) & BFTAIXUYEXX + RFTAGXJEX]
X1 = X
VEX1 = UEXX
CONTINUE
CONT INUF
LOAD BOUNDARY VALUES NOF U AND V-—
IF NRC 1S 1, LOAD EXACT 1) AND V3 IF NBC IS 2, LDAD U=0 AND V=0 FAR
FROM AIRFOIL .
K = KM
DD S J = 2,NX
viJ,1) = 0.
X = XJVvid
IF (X*X.LEaa25001) V{Je1l)= =4 .%X
15 (ABS{XkX=e25)elTeleE-5) V(J,y1) = .5%V(J,1)
IF (NBC.EQa1) UlJIWK) = UEXI(XJUTJII,YU)
IF (NBC.FND.2) IlJ,K) = O,
CONTINUE
DO 6 K = 2,NY
IF (NRC.EQ.2) GO 7O 33
U1l 4K) = UFX{XL,YKU(K))
VIJIM,K) = VEX(XU,YKV(K)}}
GO TO 6
Ufi14K) = 0.
VI{JM,K) = 0.
CNNTINUE
MODTFY FRINGFS 0OF INTERIOR TN INCLUDE ARNUNDARY VALUES~--
NO 7 J = 2,NX
VI3s2) = VId,2) + VIJ,1)
UTJIoNY) = UTJNY) - ULI, KM
CONT INUE
DO 8 K = 2,4,NY
VI2,K) = V{2,K) + BETA2*1J{1,K}
UINX,K) = U(NX,K) + RETAXV(JM,K)

CONTINUE
7ERQ APPROPRTATE RNUNDARY VALUES--
K = KM
DO 9 J = 1,dM
UtJd,Ky = 0,
V'JyK’ = 0.
viJds1) = 0.
CONTINUE

DO 10 K = 1,KM
VIJIM,WK) = 0.

Ufl,K) = 0.
V{1,K) = O,
CONTINUE

NEXT DETERMINF VECTOR FO.
DO 11 K = 2,4NY
DD 12 J = 24NX
VIJsK) = VIJyK) = V{JsK+1) + RETALXU(JI LK) ~ RETA2%U{ J-1,K)
CONT INUE
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62

11

17

34

18
19

20

21
22
23

CONTINUF
CALL CALCDINEY)
Al = 2. + RETA%XRFTAL
A = Al # RETA¥BCETA2
T12 = 171
TL = SECOND(TTL) - T7T2
CALL CR2UVC
T72 = 171
T2 = SECOND(TTL) - TT2
Ny VIS DETERMINFD FOR g = 2 TO NX AND K = 2 TO NY,.
NFXT DETERMINE U FOR THE SAME J AND K.
DO 15 KB = 2,NY
K = NYP2 - K8
DO 16 J = 24NX
B{JdeK) = UlJyK+1) = 1HTIHK) + RETAR(V(ILK) - VIJ+1,K))
CONTINUE
CONTINUE
IT?2 = T71
T3 = SECOND(TT1) - TT2
RELOAD BNUNDARY VALUES 0OF 13 AND V,
IF NBC IS 1, LNAD EXACT 4 AND V3 IF NBC IS 2, LOAD U=0 AND V=0 FAR
FRNM ATRFOIL.
K = KM
DO 17 J = 2,NX
ViJy1) = 0.
X = XJvid)
IF (XAX.LE,.25001) VIJyl ) = —4.%X
TF (ABS{X%X=22501eLT41eE-5) VIJy1) = ,5%xV{J,1)
IF (NBRCLEQL1) Uld,K) = UEXIXJULJI), YU
IF (NBC.FQ.2) UlJsK) = 0.
CONTINUE
DO 18 K = 24Ny
TF {NRCLEQ.?) 60 TO 34
UL1,K) = UEX(XL,YKU(K}}
VIIMK) = VEXIXU,YKV{K]))
GO 7O 18
Ull,K) = 0.
VIJIM,K)} = 0.

CANTINUF
FORMAT (1HIXURICIC*//% SNLUTION 0OF CAUCHY-RIFMANN EQS. (WITH EXTRA
1TERMS) BY CYCLIC REDUCTINN, VEFSION Co%x/

1% INCOMPRESSIBLE FLOW OVER THIN RICONVEX AIRFQOTIL. CHORD IS FROM X=
2—=25 TO +,5,%//% NBO=%,[3,%, (IF MRC IS 1, EXACT BRC* S ARE IMPQSFD
3FAR FRNOM ATRFQOTIL: IF NRC IS 2, U AND V ARF ZFRO ON OUTER BOUNDARY,
/% ALPHAl=%,FE15.79s%y ALPHA?2=%,F15,7,%,%//

5% NX=*,I3,*, NY=*1Y3,*' XL=*'F10.67*7 XU:*1F10-69*' YL=*1F10.69
6%y YUz%,F10ebe%y HX=XgF 15,7 4%, HY=*1€1507'*-*//QXQ1HJ’3X11HK76X1
TAHXJIUy TXe3AHYKU 98X 9 1HU y 8Xy BHUF Xy 8Xy 4HERRU G 11 Xy BHX IV TX 9 3HYKV,8X 41 HY
8y8Xy3HVEX,8X,4HERRV)

WRITE(6419) NRCL,ALPHAL,ALPHAZ yNXsNY e XLy XUy YL 3 YU HX yHY
FORMATI6Xy214,F11.693F10.64F15.74F11.6,3F10.6,F15,7)

KI = NY/16

IF IKILFQ.0) KI = 1

IF INX-2%%NFX.EQ.0) GO Tn 21

JT = NX/720
GO TN 22
JT = NX/16

IF (J1.E0,0) JI =1
EQRMAT (1X)



26

27

35
36

28
29
25

24
30

38
29

40

46

DN 24 K = 1 ,KM,KI

WRITE(6,23)

YA = YKU(K)

YR = YKVIK)

DN 25 J = 1,IM,J1
XA = XJuid)
XB = XJVI(I
IF (J.EQ.JM.OR.KL.ER.1) GO TN 26
UEXA = UEX{XA,YA)
UA = Ul J,sK)

GO 70O 27
UEXA = 0.
UA = 0.

I {(J.EQ.1) GO TN 28
IF (K.NE.1) GO YO 35
VEXB = 0.

GD TO 36

VFEXB = VEX({XB,YR}

VB = V{J,¥)

GO YO 29
VEXB = 0.
VB = D.

ERRU = UA - UEXA
ERRV = VB - VEXB
WRITEU(6420) JyKyXA,YA,UA,UEXA,ERRU,XB,YB, VB, VEXB, FRRV
CONTINUF
CONTINUF
FORMAT(//* T1l=%,F12.4 4% SEC.y T2=%,E12.49% SFCey T3=%4E12.49% SEC.
1%)
WRITE(6,30) T1,72,73
FORMAT(///% VELOCITIES AT Y = 0.%)
FORMAT (/726X 9 1H 9 X9 3HXJIUH 10Xy LHU 13X 43HUEX 411X, 3HXJV,10X,1HV 413X,
13HVEX/ /)
FORMAT(23XyT45F114632FE15.79F112642F15.7)
WRITE(6,28)
WRITE(6,39)
DO 42 J = 2,NX
XA

x
g
inon
i X X
[
<
-
[
~—

VEXB = 0.
TF {(ABSIXA%XXA-425) aGELL1LE-5) UEXA = UEX{XA,0.)
IF (XBR%¥XR.LE«e25001) VEXB = -=4.%XR
ve = viJ,1)
yp = D.125%(9,%NT03,2)1=11{Jy3) 43, %BFTAX(V(J,1)-VII+1,113))
WRITE(Ay40) JyXA,UA,UEXA,XB,VB,VEXB
CONT INUE
WRITE(6,445)
DELTX = L1%HX
X ~e5 = 1. 1%HX
N 0
N N + 1
IF (NJEQ.2) X = 45 = 1a.1%HX
WRITE(6,22)
DO 47 1 = 1,21
X = X + DELTX
UEX1 = 0.

[}

63



64

47
45

48

10

20
30

OO0

CHet

VEX1 = 0.
IE {ARSUX%kX=,25)4GEa1eF-5) UEX1 = UEX(X,0.)

IF IX%XLE..25001) VEX1 = —4.%X
WRITE(6,48) X,UEXLyVFXL
CONT INUE
IF (N.EQ.l) GO TN 46
FORMATU/ /% EXACT VELOCITIES AT EDGFS.%//29X ¢ 1HX y 11X 93HUEX, 12X, 3HVE

1X)
FORMAT(23X,F10.6+2E15.7)
1IF (LASCAS.EN.D) GO TD 2
sSTOP
END

SUBRQUTTNE CALCD(NFY)
DIMENSINONS OF DIL,M) AQE LMAX=NEY-1 AND MMAX= 2¥*|_MAX,
DIMENSIDON D(6,64)
COMMON/NC/D
LMAX = NEY - 1
D{ly1) SQRT(2.)
Dl(1,2) ~Dt1,1)
DD 30 L = 2,LMAX
MMAX = 2%%
MMAXH = MMAX/2
MMAXHL = MMAXH + 1
DO 10 M = 1,MMAXH
DELL,M) = SORT({2.+ DI(L-1,M))
CONT INUE
DO 20 M = MMAXH1,MMAX
MM = M ~ MMAYXH
DULyM) = =D(L 4MM)
CONTINUF
CONTINUE
RETURN
END

SURRDUTINE CR2UVC
ROUTINE TO SALVE RY CYCLIC RFDUNTINN A BLNCK-TRIDIAGONAL EQUATION

FOR USE IN UBICIC.

DIMENSINON V(129,130),D{6,64 ),DUMI129)
COMMON NEXyNXyNFY  NY,RETSN, A, AL, ALFA,ALFAL,K,V/DNC/D

JM = 1 + NX
KM = 1 &+ NY

LMAX = NEY -~ 1

FORWARD RFCURSION~—FTIRST LEVEL 1S iL=1.
KH = NY - 1

DN 1 K = 3,KH,2



no 2 J = 2,NX
VUJdsK) = 2.%V1J,K)

2 CONT INUE
ALFAL = Al
ALFA = A

CALL GE2M2
DN 3 J = 2,NX
V(J'K, = V(J,K) + V(J’K-l) + V(JyK"'l)
CONTINUE
CONTINUFE
DD &4 L = 2,LMAX
NH1 2%k (L=-2)
NH2 2%MH1
NH3 3*NH1
NHS 4%NH 1
KL NH4 + 1
KH KM - NH4
DN 5 K = KLyKHNH4
K11 - NH1
K12 NH1
K21 NH 2
K22 NH?
K31 NH3
K32 NH3
DN 6 J = 2,NX
puMt ) V{J,yK)
viJ,K) 2. %W IJyK)=V(JyK11I+V(J,K21)-V(I,K31)
1 ~VI(JeK12V4V{J,K22)-V(J,K32}
6 CONTINUE
N 7T M = 1,NH2
ALFAL = Al + D{(L-1,M)
ALFA = A + D(L-1,M)
CALL GE2N2
7 CONTINUE
DC 8 J = 2,4NX
VIJyK)Y = VIJ,K) + DUM(J) - VIJ,K11) ¢+ VvIJ,K21) -viJ,
1 K1?) + VIJ,K22)
8 CONTINUE
5 CONTINUF
4 CONTINUF
c
Ce++ BACKWARD RFCURSION-— NEFINE NEW INDFX, LR = LMAX-L+1 = NFY-L.
DD 12 LR = 1,LMAX
L = NFY - LR
NH2 = 2%%{1-1)
NH4 = 2%NH2
KL NHe + 1
KH KM - NH4
KT 2%NH4
DN 13 =
K21
K22
K41
K&2
DD 14
DUMC J)
ViJdeK)
14 CONTINUDE

LRt

o Howin
RARRXERXRERR
+ 1+ 1+

N

[/}

=

KL ¢yKH,KT
NH 2
NH2
NH4
NH 4
24 NX
Vi J,yK)
V{JyK) + VIJ,K41) + VIJ,K4E2)

[T I | I
eXRRAXI
t+ 4+ |

L]
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lq)

YO

17

R

DIt 15 M = 1,NH4
ALFAL = A1 + D{L,M)
ALFA = A + DL, MY
CALL GEZN2
CONTINUFE
no 16§ = 2,NX
VIJeK) = V{JsK) + 5x{DUMIJ) - VI{J,K21) - VIJ,K22))
CONTINUE
CONTINUF
CONTINUF
DO 17 K = 24NY,2
NN 18 J = 24NX
VEJeK) = VIJ,KY + VIJyK=-1) + V{J,K+1)
CONT INUE
ALFALl = Al
ALFA = A
CALL GE2N2
CONTINUE
RETURN
END

SUBROUTINE GE2N2

ROUTTYNE TD SOLVE RY GAUSSTAN FLIMINATINN THE TRIDIAG. EQ.y
TIGAMMAL,ALFALDELTAIXY=F (RUT WITH THE FIRST DIAG.FLEMENT REPLACED
RY ALFAl), WHERE V AND F ARF 2-DIMENSIONAL,

IN THE PROGRAM, V AND F APE EQUIVALENT,

DIMENSION V{(129,130)},5(129)
COMMDN NEX,NXyNEY NY,BFTCO,A, A1 ALFALALFAL,K,V
COMPON/CPEF/GAMMALDFLTA,GD, DELTAT

ALFALY = 1./ALFAL
AV FD = L1LFA%RDELTATL
SE2Y = ALFALYADELTA
VEZyR Y m VIZ2 KIRALFALT
IR S 3¢ N¥
SUJd 1. /UALFED = GO*SUJ~1))
VIideKY = SUIP=INELTAIRVII KI- GD*V{J-1,K))
CONTTNUE
FDOR BACKWAPD SWEEP, DEFINE NEW TNDEX, JB = NX+2-J,
NXP2 = NX + 2
NN 2 J9 = 2 ,4NX
J = NXP2 -~ JR
Vids KT = VIJ,K) - STII*V{g+1l4K)
CONTINUE
RETUPN
FND

o



APPENDIX D

FORTRAN LISTING OF EXAMPLE PROGRAM AND SUBROUTINES FOR SECOND
REVISED AND EXTENDED CAUCHY-RIEMANN SOLVER, VERSION D
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CH++t

[aXeEalaNaRaNe!

103
104

C+++

68

MAIN PROGRAM, UBIC1ID FOR CDC 7600

SOLUTION JF CAUCHY-RIEMANN FQS. FNOR INCOMPR, FLOW DVER THIN BICOANV
AIRFOIL USING VFERSION D NOF CAUCHY-RIEMANN SDLVFR {WITH EXTRA TERMS
CONTAINING CONSTANT COEFFS.).

AIRFOIL CHORD IS FROM X=-,5 TO +.5.

THE METHOD AND THE PRNOGRAM ARE DESCRIBEDR TN NASA TN D-7934
RY E. Do MARTIN AND He LOMAX,

DIMENSION U(129,129),V(129,130),VT(129),VBI129),UL11291,VR(129)
DIMENSINN FKM(129),U7(129)

COMMON NEX, NXsNEY NY,RETSQ,A,A1,ALFA,ALFAL, K,V

COMMON /CDEF/GAMMA yDELTA GD,DFLTA]

XJULJU) = XL + HX*FLDAT(JU-1)

YKU{KY) = YL + HYX{FLDAT{KU)-1.5)

XJVIJVY = XL + HX*[FLNAT(JV)I-1.5)

YKVIKV) = YL + HY*FLOAT{XV-1)

RHOIX,Y) = SORT{({{X+.5)%%2 & YXY)/({X=-,5)%%2 + YxY))
ANPHTI{X,¥Y) = ATANZ2(Y,X=45) - ATAM2{Y,X+.5)

UEXIX,Y) = FCTR*{1l., — X*ALNGIRHOIX,Y)) — Y*ANPHI(X,Y))
VEX(XeY) = FCTR*¥{YXALOGIPHOI{X,Y) )= XXANPHI(X,Y))

FCT® = 4,.,/3.,14159265

FORMAT (415, 4F10.0,215)

READ(S541) NEX NXgNFYNY XL o XUyYLyYUNBC,NUBDRY
FORMAT(2F10.0,415)

REAND(5,103) ALPHAL1, ALPHA?2,LASCAS

CALL SFCOND(TT1)

THE INPUT VALUFS NF XL AND XU ARE NOMINAL VALUES,USED TD
COMPUTE THE EXACT VALUES.

HX = (XU - XL)/FLNAT(NX)

JLF = 1,005 + (-.5 — XL)/HX

XL = =5 = HXX(JLE - 1)

XU = XL + HX*{NX - ,.5)

HY = (YU - YL)/FLQATI(NY)
JM = 1 + NX

KM = 1 + NY

NYP2 = NY + 2

BETA = HY/HX

BETSO = BETAX%2

BETAl = BETA%*{1., — ALPHAl)
BETAZ2 = RFTAX{1l. + ALPHA2)

BETA3 =-BETA%ALPHAL
BETA4 =-BETA*ALPHA2
GAMMA = -BETAXBETA?
DELTA = -BETAXBETAL
GD = GAMMA/DELTA
DELTALI = 1,/NELTA
BETALT = 1./BETAl
INITIALYZE INTERIDR VALUES OF MASS SAOURCFS AND VNRTICITY (F 1S
EQUIV. YO V EXCEPT AT K = KM AND G IS FOQUIV. TD U)--
DD 3 K = 2,NY
Y = YKU(K)
X1 = Xt
UEX1 = UEX{X1,Y)
DO 4 J = 24NX
X = XJuJ)
UEXX = UEX{X,Y)}



utJ,KI
vViJg,K)
X1 = X
UEX1 = UEXX
4 CONTINUF
3 CONTINUE
Y = YKU(KM)
X1 = XL
HEX1 =UFX({X1,Y)
DO 105 J = 2,NX
X = XJutd)
UFXX = UEXIX.Y)
FKM{J) = BFTA3IXRUEXX + RFTA 4%UF X1
Ul Js KM} = 0O,
X1 = X
UEX1 = UEXX
105 CONTTNUF
C++++ CALC BOUNDARY VALUES NF U AND V~--

0.
RFTA3XUEXX + BETA4*EX]

C 1F NMBC IS 1, CALC FXACY U AND v3 IF NRC 1S 2, CALC U=0 AND V=0 FAR
C FROM ATRFNIL,
DO F J = 2,JM
VRUJ) = 0.
X = xXJviJ)

IF (XX .LEWL.25001) VB{J)= —-4.*X
1F (ABS{X%X=225)eLT.1.F~5) VBLJ) = L5%VR(J})
1F (NRCLEQ.L1) VTUY) VEXI{X,Y1))
17 (NBC,EQ.2) VT(J4) De
5 CONTTNUE
IF {(NUBRDRY.EN.0) GO TN 116
Y = YKUIKM)
IF (NUBDPY,.GTL1) Y = Y1)
DA 117 J = 24NX
IF (NRC.FQ.2Y GU TO 118
X = XJutJy
UTJ) = UEXIX,Y)
6N 10 117
118 utiJny = o,
117 CNONTINUF
116 CONTINMyE
DO 6 K = 2,KM
IF (NBC.EQ.2) GN TO 33

0o

ULEKY = UFXIXL,YKU(K))
Ve(K) = VEXIXU, YKVIK))
GO TN &

33 UL{K) = 0.
VRIK) = 0,

& CONTINUE

C+++ MODIFY FRINGFES OF INTERIOR TO INCLUDE BOUNDARY VALUES--
DO 7 4 = 24NX
Vi d,s2) VIJd.2) + VBLY)
FKM{J) FKM{J4) - VT{I)
VUI,KM) = FKMU))
7 CONTINUE
DO 8 K = 24NY
VI2,K) = VI2,K) + BETA2*ULIK)
UCNX oK) = UINX,K) + BETAXVRIK)
8 CNONT INUE
FKM{2) = FKM{2) + BETAZZXUL{KM)
VIED,KM) = FKM{2}



C+++ 7ERQO APPROPRIATT BOUNDARY VALUES ON LEFT AND RIGHT--
DO 10 K = 1,KM
VIJM K = 0.
U{l1,K) = 0.
vil,K) = 0.
10 CONTINUE
C+++ NEXT DETERMINF VECTOR FO (FQUIV. TO V).
DO 11 K = 2,NY
ND 12 J = 24NX
VIJ,K) = VIJ,K) = vUJ,K+1) + BETAL*U{J,K) - BETAZ2*U(J-1,K)
12 CONTINUFR
11 CONTINUF
C+++ ZERO APPROPRIATFE BOUMDARY VALUES ON TNP AND ROTTOM,
nn9 Jg = 1,JM
V{J,KM) = 0.
vid,1) = 0.
9 CONTINUF
CALL CALCDINEY)
A1 = 2. + BETAXBETAL
A = Al + BETA*RETA2
772 = TT1
Tl = SECOND(TT1) - T72
CALL CR2UVC
TT2 = 171
T2 = RECONDITTIY - 772
C+++ NOW V TS DETERMINED FOR J = 2 TO NX AND K = 2 TO NY.
C NEXT DFTERMINE U FOR ALL J AND K.
IF (MUBDRY.NE,0) GO TD 119
DD 106 J = 2724NX
ULJKM) = RETALIT*(BETA2®U(J-1,KM) + VII,NY} + FKM{J))
106 CNNTINUE
GO TO 120
1i® GO "7 (121,122,123) NUBDRY
121 DN 124 J = 2,NX
UWJd.KM) = UT(J)
124 CONTINUF
GO TO 120
122 BETAS = .S5%BETA
NN 125 J = 2,NX
U{J,KM) = UTH{J) + RBETASX{VT(J) — VTIJ+1})
125 CONTINUF
GO "0 120
123 BFTA6 = ,125%BETA
BFTAT = 2,*BETASG
VOJM,NY) = VRINY)
DN 126 J 29 NX
UlJdyKMY = UT{IIABETATHRIVTIII-VTII+1) )+BETAG*(VIJ,NY)-V(J+1,NY))
126 CONTINUF
VUJIM,NY) = 0.
120 CONTINUE
DO 15 KB = 2,NY
K = NYP2 - KB
DD 16 4 = 24NX
UCJyK) = UlJeK+1) — ULI,K) + BETAX(VIJyK) = VIJ+1,K))

16 CONTINUE
15 CONT INUE
T72 = TT1

T3 = SECOND(TT1) - 772



C+++

17

18
19

20

21

23

26

27

RELPAN ARQUNDARY VALUFS NF U AND V.
IF NPC IS 1, LOAD EXACT U AND V; IF NBC 1€ 2, LOAD =0 AND V=0 FAP
FRNM AIRFDIL.
ND 17 4 = 24NX
ViJ,1) = valtn
VIJ,KM) = VT L)
CONTINUE
DD 18 K = 2,KM
Utl,K) = UL(K)
V{JM,K) = VRIK)

CONTINUE
FORMAT (1 H1*UBTICIN*//* SOLUTION OF CAUCHY-PIEMANN FQS. (WITH FXTRA
1TERMS) BRY CYCLIC REDUCTION, VERSTION D%/

1% TMCOMPRESSIBLE FLOW OVER THIN BICONVFEX AIRFNTL, CHORD TS FRAM X=
2-e5 TD #.,5.%//% NBC=%,13,%, IF NRC IS 1, EXACT RCY S ARE IMPOSFD

3FAR FRNOM ATRFDIL; IF MBC IS 2, U ANND V APE Z5RN NN OQUTER BAUNDARY,
4%/ /% NURNDRY=%*,13,%, RNW OF U(J,¥) JUST TNSIDE UPPER RNINDARY,T.F.
49 ULJrKM), TS COMPYTEN DIFFERENTLY ACCOPDING TN SPECIFIED NURDRY %
4/% 15 NURDRY= 0, ULJ,KM) TS COMPUTSED FPNM COMNTINUITY Ef., (UNSTARLE
4 CALCULATINM 1% BRTA2/RFTAL IS GT 1,.0) %

4/% = 1y UIJyKM) IS COMPUTEN FROM U SPECTFTED AT Y=YKU{KM)
4y DETFRMINEDN FRDM SAME RELATINON THAT DFTEOMINES NUTFR (CNONDS.*

4 /% = 249 U(JsyKM) TS COMPUTFD NSING 1ST-NPOFR-ACC . ONF-SIDE
4D Y-DEFRIVL. TN MTAT, £Q, AT Y = YU, WITH 1) SPRECIFTED THERF, *

4/ * = 3, UlJ,KM) IS COMPUTEDN USING 2ND-NRNDFR-ACC. DNE-SINF

4D Y-DERIV. IN ROTAT, EQ. AT Y = YU, WITH U SPFCIFIFD THFRFE,
4%/7% ALPHAL=%X,E15,.7,%, ALDHAD =% ,F15,7 4%, ,%//
B¥ NX=%ky T3y %, NY=SH* T3,%, XL=%,F10.69%y XU=%,F10.69%, YL=%,F10.6,
6*9 Y”=*,F10.61*1 HX=*,E15.79*9 HY=*1E15979*c*,/QX’1HJ,3X’1HK,6X9
T3HXIUy TX3HYKU 98X g LHUy BX y BHHE X, AX y4HERRII, 11 X3 3HX IV TX 93HYKVY 48X 4 L HY
8+BXs3HVEX8X 4 4HEPRY )
WRITE(6,19) NRCSNURDRY  ALPHAL y ALPHA? g NX G NY, XL o Xy YL o Y1, X,y HY
FOPMAT(6X9 2144F 11464 3F 10.6,F15,7+F110643F10.,46,F15,.7)
KT = NY/16
IF (KT.FR.0) KI =1
IF (NX-2%%NEX.EN.D)} G~ TO 21
J1T = NX/20
6N TH 22
JI = NX/16
TF (JT1.EQ.0) JT =1
EORPMAT(IX)
NN 24 K = 1,KM,KT
WETTE(6,23)
YA = YKU(K)
Y3 = YKVIK)
nno25 J = 1,JM, U1
XA = XJutd)
XB = XJV{J)
I {JEQeUM.OR. K. FQR.1) D TN 26
UEXA = UEX{XA,YA)
UA = UlJ,K)

G0 Th 27
UFXA = D,
UA = 0.

IF {(J.FNLY) GN TO 28

IF {K.NE.1) GO TN 35

IF (ABS(X%(X=o25)."FE.1.5~5) G TN 15
VEXB = 0.

GN TN 36
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35
36

28
29
25

24
30

28
39

40

46

47
45

48

72

VEXR = VEX{XB,YR)
VR1 = V(JyK)

GO To 29
VEXB = O.
v3l= 0.

FPRU = UA - UEXA
ERRV = VR1 - VFEXB
WRPITE(E 320) JeKoXAsYAJUA,UFXALERRU,XByYR,VR1,VEXR,ERFY
CONTINUE
COANTINUYE
FORMATI(//* Tl=%,F12449% SECay T2=%,F12.49% SECay T3=%,F12.4,% SFC.
1%}
WRITE(A,30) T1,72,72
FORMAT{///% VFLOCITIFS AT Y = 04%)
FORMATI(//26X e 1HI ¢ AXy 3HXJU s 10X IHUSI3X y2HUFY 311X 3HY JV,10X,1HV,13X,
13HVFX/ /)
FORMAT(23X 3 T4,F11.6,2F15.7,F11,6,2F15.7)
WYRITE(6,38)
HRITE(6439)
DO 42 J = 24NX
XA = XJutJ)
Xg = XJgvitld)
UEXA = 0.
VFXR = @,
TF {ARS{XA*XA~,.25).6F.1.E-5) UFXA = UFX({X2,0.)
TFEF [ XBEXB LT aa?5001) VEXB = 4 ,%XR
val = vid, 1)
UA = 0.125%{9, X1 J42) Ul Jy )42, ¥RETAX{(VIY,1)-V(JI+1,1)))
WOITFEL{H,40) JyXAA,IIEXA,XB,VB1,VEXR
CONTINYF
WRTITE(6,45)
DELTX = o1%HX
X —eb5 = 1,1%HX
N 0
N N + 1
TE IN,FRL2) X = .5 — 1. 1%HX
WP ITF(54,23)
PN 47T 1 = 1,21
X = X + DELTX

oy

UrX1 = 0.

VEX1 = 0.

TF (ABS{XEX=,725).GFalaE=5) UFX1 = UFXIX,0.)
IF (X¥X L Fes25001) VEX] = ~4,.%X

WRTITS(6,48) X,UEX1,VFX1

CONTINYF

IF (NJFQL.1) GO TNO 486

FOPMAT{/ /% EXACT VELOCTTIFS AT ENCES,&X//20X, IHX ¢ 11X 43HUFX,y 12X, 3HVF
1X)

FOPMAT{23X,F10.6,2F15.71)

IF (LASCAS.EQ.0) GO TO 2

STND

END



10

20

e Xalel

C+e+t

Ll *

SUBRNUTIMNE CALCN{NTY)
DIMENSTONS 0OF DL M) ARE LMAX=NEY-1 AND MMAX= 2%%&| MAX,
DIMFENSTINN D(6,64)
CoOMMNONM/DC/D
LMAX = NFY - 1
D{ly1l) = SORT(2,)
D{1,2) = -D(1, 1)
no 30 L = 2,LMAX
MMAX = 2%%{
MMAXH = MMAX/?
MMAXHT = MMAXH + 1
DO 10 M = 1,MMAXH
N{LyM) = SQRT 2.+ DI{L-1,M))
CONTINUE
DO 20 M = MMAXH1,MMAX
MM = M - MMAXH
D(LyM) = -DlLMM)
CONT INUE
CONTINUF
RETURN
END

SYRROUTINE CR2UVC
ROUTINE TN SOLVF RY CYCLIC REDUCTINN A RLOCK-TRINDIAGONAL EQUATION
FOR USE IN UBICIC.

DIMENSINN V(129,130),D(6,64 ),DUM{123)
COMMON NEX,NXyNFY,NY,RETSD,A,Al yALFA, ALFAL,K,V/DC/D

JM 1 + NX
KM 1 +# NY
LMAX = NfY -1
IF {(NY.EQ.2) 60O TN 20
FORWARD RECURSINN-~-FIRSY LEVFL 1<% L=1,
KH = NY -1
DN 1 K = 3,KH,2

nn 2 J = 24NX

VIJeK) = 2.%V1J,K}

[

CONTINUE
ALFALl = A1l
ALFA = A

CALL GE2N?2
no 3 J4 = 2.NX
VIJyKY = VIJ,K) + VIJyK-1) + VI{JyK+1)
CONTINUE
CONT INUE
IF (NY.EQ.4) GO TO 21
00 4 L = 2,LMAX

NH1 = 2#%% (L -2)
NH2 = 2%NH]1
NH3 = 3%NH1
NH4 = &4%NH1
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ot

16
13
1?2
20

18

KL = NH4 + 1
KH = KM - NH&
NN 5 K = KL,KH,NH4
K1l = K - NH1
K12 = K + NH1
K21 = K — NH2
K22 = K + NH2
K31 = K = NH3
K32 = K + NH3
D0 6 J = 24NX
DUMLI) = V(JyK)
VIJsK) = 2.%V(JeK)=VJyKL1I#+VJ,K21)-VJ,K31)
1 “V{J4K1214+VIJ,K22)1-V(J,K32)
CONTINUE
D07 M = 1,NH2
ALFAL = Al + DI{L-1,M)
ALTA = A + D{L-1,M)
CALL GF2N2
CANTINUF
NO0 8 J = 24NX
VIJeK) = VIJ,KY + NUMIJ) ~ VIJ,KITY + VIJ,K21) -V{J,
1 K12} + V{J,K22)
CONTINUE
COMNTINUE
CONTINUE
CONTINYE
RACKWARD RECURSION—— DFFINF NEW TMDFX, LR = {MAX-1+1 = NFY-{,
nmo1? LR o= LoLMAYX
1. = NFY - LR
NHZ = 2¥%k{L-1)
M4 2HENH 2
KL = NH& + 1
KH = KM ~ NH4
KT = 2%\H4
ne 12 K = KLvKHvKI
K21 = K —~ NH2?
W22 = K 4 NH?
K4l = K - NH4
K&? = ¥ & NH4
D14 J = Z,NX
NUVMTYY = VI JsK)
VIJyKY = VIJ,K) + V(J4KEL) + VIJ,KED)
CONT INUF
no 15 M = 1,NH4
ALFAY1 = A1 + DI{L,M)
ALFA = A + NlL,M)
CALL TF2N?
CONTIMUF
nno16 J = 2yNX
V{JoKY = VU J,K) + SH(DUMLI)Y - VIJ,K?21) - V{J,K2?7))
CONTINUE
CONTINUE
CONTYNUF
CONTINUE
N 17 K = 2,4NY,2
DO IR J = 24NX
VIJiK) = VIJIK) + VIJ4K=-1) + VIJ,K+1)
CONTINUFE



ALFAl = A1l
ALFA = A
CALL GF?2M2
17 CONT IMUS
RETURN
END

SURRAUTINE GFE2N2

+4++  POUTINE TN SPLVE BY GAUSSTIAN FLIMINATICN THE TRINDIAG. EN.,
TIGAMMA, ALFALDFLTA)YXY=F (BUT WITH THF FIPST DBTAG.ELEMENT PEPLACED
BY ALFAY1), WHERE Vv AND F ARE 2-DTYMENSTNMAL,
IN THE PROAGRAM, V AND F ART FQUIVALENT,

s NeleleNe!

DIMENSION V{129,130),5{129)
COMMON NFXy NXyNEY NY,B3ETSQ,A,AL1,ALFALALFAT, K,V
COMMON/CONEF /G AMMA ,NFLTALGNL,DELTATY

el

ALFALIT = 1./ALFAL
ALFD = ALFAXDELTAT
S{2) = ALFA1T%DELTA
V{?,K) V{2, K)YX*ALFALT
POl oJ 34 NX
<S{J) 1. /{ALFDN - GDXS(J=-1))
V{JeKY = S{JI=INELTAT RV {J,K)—- GDRHRVIJ-1,K 1))
1 CANTINDE
¢ FOR BACKWAED SWEEP, NEEIME NFW INDEX, JR = NX+?2-J.
NXP2 = NX + ?
nn 2 JB = 2 4NX
J = NXP2 - JB
VIJyKY) = VIJK) = SUJ)*xV{J+1,K)
CONTINUE
RFETURN
END

Howon

N
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APPENDIX E

FORTRAN LISTING OF EXAMPLE PROGRAM AND SUBROUTINES FOR SECOND
REVISED AND EXTENDED CAUCHY-RIEMANN SOLVER (VARIABLE COEFFICIENTS),
VERSION E



c MAIN PROGRAM, UBIC1E FOR CDC 7600

C+++ SOLUTION IF CAUCHY-RIFMANN EQS. FOR INCOMPR. FLOW DVER THIN BICONV
AIRFOIL USING VERSION £ OF CAUCHY-RIEMANN SOLVER (WITH EXTRA TERMS
CONTAINING VARTABLE CNEFFS.).

ATRFDIL CHORD IS FROM X=-,5 TN +.5,.

THE METHOD AND THF PROGRAM ARE NFESCRIBED TN NASA TN D-7934
RY E. Do MARTIN AND He LOMAX.

OO0 N

DIMENSTION U(129,129),V(129,130),VT{129),VB(129),UL{129),VR(129)
DIMENSION UT(129),ALF(1291,BET(129),GAM{129)

DIMENSINN RETA1(129),RETA2(129),RETA3(129),BETA4(129)

COMMON NEXy NXyNEY gNY 4 NXP2 4K,V

COMMNN/COEF/NyM,ALF,RET,GAM

XJutJul
YKUIKO)

XL + HX*FLOAT(JU-1)

YL + HY*(FLOAT{KUI-1.5)

XJVJV) XL + HX*{(FLOAT(JV)I-1.5)

YKVIKV] YL + HY*FLOAT(KV-1)

RHOUX,Y) =  SQRTUI{X+.5)%%2 + Y*Y)/{{X-.5)%%2 + YxY))
ANPHI(X,Y) = ATAN2(Y ,X-.5) ~ ATAN2{(Y,X+.5)

UEXI{XsY) = FCTR*(1e - X*¥ALDGI(RHO(X,Y)) — YXANPHI(X,Y))
VEX(XyY) = FCTR¥{Y*ALOG(RHD{( X, Y) )~ X*ANPHI(X,Y))

O

F1(JU}
F2 1JU)

XJueJyy) - .5
XJUulJyu) + .5

FCTR = 4,/3,14159765

FORMAT (415,4F10.0,315)

REAND(5,1) NEX;NXyNEY NY,XLyXU,YL,YUNBC,NUBDRY,LASCAS
CALL SECNAND{(TT1)

THE INPUT VALUES OF XL AND XU ARE NOMINAL VALUES,USED TO
COMPUTE THE FXACT VALUES.

HX = (XU - XL)/FLOATI(NX)

JLE = 1.005 + (-.5 - XL)/HX

N -

alel

XL = =¢S5 = HX*([JLE - 1)

XU = XL + HX*(NX - .5)

HY = (YU - YL}/FLOAT{NY)

JM = 1 + NX

KM = 1 + NY

NXP2 = 2 + NX

NYP2 = 2 + NY

RETA = HY/HX

BETSO = BETA%*%2

ALPHA2 = -1,0

DD 127 J = 2,NX
ALPHAL = F1l))
BETA4(J) = —-BETA*ALPHA2
BETA3(J) = —-BETA%ALPHA]
BETA2{(J) = BETA — BETA4(J)
BETAI(J) = RETA + BETA3(J)
ALF(J) = BETA*BETA2(J)
GAM{J) = BETA%BRETAL(J)
BET{J)Y = 2. + ALFUJ) + GAM(J)
ALPHA2 = F2{J}

127 CONTINUE .
C+++ INITTALTZE INTERIOR VALUES OF MASS SOURCES AND VDRTICITY (F IS
c EQUIV. TN V EXCEPT AT K = KM AND G IS EQUIV. TO U)--



118
117
116

C+++

10
CH++s
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DN 3 K = 2,KM
Y = YKULK)
X1 = XL
UEX1 = UEX(X1l,Y)}
DO & J = 2.NX

X = XJutJ)
UEXX = UEX{X,Y)
UtJdsK) = 0.
VIJ3.K) = BETA3{JIXUEXX + BETAL(JIXUEX]L
X1 =X
UEX1 = UEXX

CONTINUE

CONT INUE

CALC BDUNDARY VALUES OF 1) AND V~—--
IF NBC 1S 1, CALC EXACT U AND V3 IF NAC IS 2, CALC U=0 AND V=0 FAR
FROM AIRFOIL.
DN 5 4 = 2,4M
VBULJ) = 0.
X = XJ4vid)
IF (X*X.LEes25001) VR{J)= —4 %X
IF (ABSIX*X-425)eL TaleE-5) VBI{J) = .5%VB{J)
TF (NBC.EQ.1) VTU{J) = VEX(X,YU)
IF (NRC.F0.2) VT{J) = 0.
CONT INUE
Y = YKU{KM)
IF (NUBDRY.GT.1) Y = YU
DN 117 J = 2,NX
TF (NBC.EQ.?) GO TN 118

X o= XJutdg)
UTUJ) = UFXIX,Y)
Gn 7N 117
uTed) = 0.
CONTINUF
CONTINUE

DO 6 K = 2,KM
TF (NRCL,EQ.2} GO 70O 33

ULIK) = UEX{XL, YKU{K))
VRIK) = VEX{XU,YKVIK))
GO TN 6
UL{x) = 0.
VR(K) = O,

CONTINUF

MONIEY FRINGES QF INTFRINR TO INCLUDE ROUNDARY VALUES--
DN 7 4 = 24NX
Vide2Y = VIJ,2) + VB
VEJ,KM) = VIJ,KM) - VT {J)
CONTINUF
NN 8 K = ?'KM
VI2,K) = VI2,K) + BETA2(2)3%L (K)
UCNX,K) = U(NX,K)} + BETA*VYR{K)
CONTINUE
IERD APPROPRIATE BNUNDARY VALUFS ON LEFT ANND PIGHT--
DD 10 K = 1,KM
VJM,K) = 0.

uf{l,x}) = 0.
V(IQK‘ = Oa
CONTINUE

NEXT DETERMINE VECTOR FO (FQUIV. TO V).



12
11
C+et

C+es

119
121

124

122

125

123

16
15

C+++

17

18
19

P 11 K = 2,NY

DD 12 J = 2,NX
VIJeK) = VIJyK) — VI{J,K+1l} + BETAL(I)*U{J,K)-BETA2(J¥*U{JI-1,K)

CONTINUE

CONTINUE

ZERN APPRNPRTATE BNUNDARY VALUES ON TOP AND BDRTTOM,.

PN 9 J = 1,JM
ViJ,KM) = O.

ViJs1) = 0.
CONTINUE
CALL CALCD(NFY)
TT?2 = TT1

Tl = SECOND(TT1) - TT2
CALL CR2UVE
TT?2 = TT1
T2 = SECOND{TT1) - 772
NOW Vv TS DETFRMINED FNR J = 2 TO NX AND K = 2 TD NY,
NEXT DETFRMIME U FOR ALL J AND K.
GO T {121, 122,123) NUBNRY
DD 124 J = 24NX
HJ,KM) = UT U4
CONTINUE
GO " 120
RETAS = ,5%RBFTA
DO 125 J = 2,4,NX
UGIXM) = UIT(J) + RETASR{VTII) - VT{J+1))
CONTINUF
GO THh 120
RETAL = .125%RBETA
RETAT = 3.%BFTA6

VIJMNY) = VRINY)
NN 126 J = 2,NX
UTJKM) = UTIJI4BETATRIVT L) -VTLJ+]1)I+RET AR (VU NY )=-VIJ+1,NY))
COMT IMUFRE
VIJM,NY)Y = 0.
CONTIMNUE

DO 15 KR = 2,NY
K = NYP2 - KB
DO 16 J = 2,NX
UlJeKY = UlJIyK+1Y = J,K) + RETAR{IV(J,K) = V{J+1,K))
CONT IMNIE
CONTINUF
TT2 = TT1
T3 = SECONDITTL)Y) - TT2
RELOAD BNYNDARY VALUES NF 11 AND V,
IF NRC TS 1, LOAD EXACT 1) AND Vs 17 NRC IS 2, LDAD U=0 AND V=0 FAR
FROM AIRFOIL.
DD 17 J = 2,4NX
ViJsl) = VB(I)
VIid¥¥) = VT(J)
CONT IMUE
PO 18 K = 24KM
Ull1,K) = UL(K)
VIIM,K) = VRIK)
CONTINUE
FORMAT [THI*URTICIF%//% SOALUTION OF CAUCHY-RIEMANN ENS, (WITH EXTrRA

1TERMS AND VARTARLE COSFFS.) RY CYCOLIC RENDUCTION, VERSTINN F %/
1% INCOMPPESSTIBLE FLOW OVFR THIN BICNMVEX AIRFOTL. CHORN IS FROM X=
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21
22
23

26

27

35
36

28
29
25

24
30

39

40

80

2—e5 TN +.5.%//% NBC=%,13,%, IF NBC 1S 1, EXACT BC* S ARE IMPOSFD
3IFAR FROM ATRFOILs IF NBC IS 2, U AND V ARE ZERDO ON OUTER BOUNDARY,
4%/ /% NURDRY=%,13,%, ROW OF UlJ,K) JUST TNSTIDE UPPER BOUNDARY, 1.E.
4y U{J,KM), IS COMPUTED DIFFERENTLY ACCORDING. TO SPECIFIED NUBDRY.*
4/% YF NUBDRY= 1, U{J,KM) IS COMPUTED FROM U SPECIFIED AT Y=YKU{KM)
4, DETERMINED FROM SAME RELATION THAT DETERMINES OUTER CONDS.*

4 /% = 2y U(JsKM)} IS COMPUTED USTNG L1ST-ORDER-ACC. ONE-SIDE
4D Y-DEFRIV. TN ROTAT. EQ., AT Y = YU, WITH U SPFCIFIED THERE.*
4/ % = 3, U(JyKM} IS COMPUTED USING 2ND-NRDER-ACC. ONE-SIDE

40 Y-DERIV, IN ROTAT. FQ. AT Y = YU, WITH U SPECIFYED THERE.*//

Sk NX=%yI3y%, NY=k,13,%, XL=%,F1l0.6y%y XU=%k,Fl0.64%, YL=%,F10,6,
6*7 YU=*'F10.6’*, HX=*,E15.7,*, HY=*9515.7v*-*,/9XQIHJ93X,1HK,6X,
T3HXJU e TX93HYKU»B8X s 1HU 3 AX y 3HJEX s BX, 4HERRU, 11 X9 3HXJV 4 TX s 3HYKVy 8Xy 1HV
848Xy 3HVE X,y 8Xy 4HERRV)

WPITE(6419) NRC,NUBDRY,NXyNY, XLy XU,y YLy YU, HX,HY
FORMAT{6X92144F114643F10.69F15,7+F11e693F10e6+FE15.7)

KT = NY/16

TF (K1.%Q.0) K1 =1

TF INX=-2%%kNEX.,EQ.0) GN TN 21

JI = NX/20
G0 10 22
J1 = NX/16

IF (J1.EQ.N0)Y JI = 1
FORMAT(1X)
DO 24 K = 1,KM,KI
WRITF(6,23)
Y& = YKUUK)
YB = YKVIK}
De 25 4 = 1,JM,J1
XA = xXJuld)
X8 = Xdv(J)
IF (J.EQ.JM.ORK.EDL1) GO TD 26
UEXA = UEX{XA,YA)
UA = UlJ,K)
GO TN 27
UFXA = O,
UA = 0.
IF {J-.EQ.1) GN TN 28
IF (K,NE.1) GO 70O 135
IF {ARS({XEX~.?5).GEal.E~-5} GO TO 35
VEXR = 0.
GC TN 35
VEXB = VEX(XB,YB)
VB1 = Vv{J,K})

GO TO 29

VEXB = 0.

Vel = 0.

FRRU = UA - UEXA
ERRV = VBl - VEXB

WRITE(6420) JoeKyXA,YAL,UA,UEXA,ERRU,XB,YB,VBl,VEXB,ERRV
CONT INUFE '

CONTINUF

FORMAT (//% Tl=*,F12.4s% SEC.y T2=%,F12,44% SEC.y T3=%,F12.4,% SFC.
1 %)

WRITE(6,30) T1,T2,73

FORMAT(///% VELOCITIES AT Y = 0,%*)

FORMAT(//26X 9 1HJy 6X9 3HXJIU, 10Xy 1HU, 13X, 3HUEXy 11X, 3HXJIV, 10X, 1HV, 13X,
13HVEX/ /)

FORMAT (23X 144 F114652E15.79F11.642E15.7)



46

&7

45

48

10

20

WRITE({6,38)

WRITE( 6,39)

0N 42 9 = 2,NX
XA =

VEXB = 0.
TF (ABS{XA%XA=025)4GFal,E~-5) UFXA = UFX{XA,0,)
15 IXB*¥XBLFEL.25001) VEXB = ~4.%XB
VP1 = ViJds1l)
UA = 0.125%{ 0, %xUl{Jy2)-U(J9y3)+3.¥BFETAR{VII,1)~-V{J+1,1)))
WRITE(6,40) Je XA UALUEXALXByVR1,VFXB
CANTINUE
WRITE(6,45)
DELTX = .1#%HX

X = =¢85 = 1.1%HX
N =20
N =M=+1

IF (N.EOOZ) X = o5 = 1,1%HX
WRITFI(6,73)
DN 47 1 = 1,21
X = X + DFLTX
UEX1 = O.
VFX1 = 0.
TF (ARS({X*X—-o2%).0FE.1.E-5) HEX1 = UFX(X,0.)
TF (XX, LF..25001) VEX]1 = —4,%X
WRITE(644R) X,UFX1l,VEX1
CONTINYIE
IF (N.FQ.1) D TN 46
FNRMAT (/ /% FYACT VELACTTIFS AT FNGFS, %/ /29X THX 11X s3HUEX 12X, 3HVE
1X)
FARMAT(?23X,F10.642F15.7)
IF (LASCAS.EN.0) GN TN 2
STNP
END

SURROUTINF CALCNINEY)
niMeneInMe 0OF DIL,M) APE LMAX=NFY-1 AND MMAX= 2%ELMAX,
NIMENSTION DU6,64)
COMMON/NC/D
LMAX = NEY - 1
N{l1,1) = SQRT(2.}
N{1,2) = -D(1,1)
DN 30 L = 2,LMAX
MMAX = 2%3%(
MMAXH = MMAX/?
MMAXHL = MMAXH + 1
no 10 M = 1,MMAXH
N{L,M) = SORT(2.+ N{L-1,M})
CONT INUFE
N0 20 M = MMAXH] ,MMAX
MM = M —~ MMAXH
NDELyM) = DL ,MM)
CONT TNUF
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30

OO0

10

11

82

COMTINUE

PETURN
END

SURRNUT

ROUTINF TO SNLVE BY CYCLTC REDUCTION A RLOCK-TRIDIANGONAL
EQCUATION WITH VARTABLE fNEEFS,

MATR IX

DIMENSTION VI129,130)4ALF{129),RFT(12729),nAM{122),D1IM{]129)
COMMNN NEX s NXpNFY, NY,NXP2,K,V
COMMNDN/COFEF/NyMy ALF,RET ,GAM

INE CR2UVF

JM = 14NX
KM = 1+NY
L2MAX = NFY-1

FARWARD RECURPSION--FIRST LEVEL TS L2=1

KH = NY
0o 5 K
D6

Vil

CONTY

N =D

Moo= 1

CALL

-1
= quHy?
J = 2,NX
JHY =
NUF

GEYVE

2RV UK}

DT 4 o=
V{JsK}

CPNTINUE

CaANTINUE

25 MX

= VEJ, K} + VId,X-1)

PO 8 L2 = 2,L2MAX

N = 1
hMH1
N2
NH7Z
NH&
KL
KH
[RARIN]
K11
K12
K21
K2?
K31
K32
nn

{1 T

b u

NUMTJ)

\Y

CON
ne

7 -1
2Rx{1 2-7}
2R NHL
kAH Y
4RNHT

NHE& + 1

NY - HH4 +1

K = KL,KH,NH4

K=NH1
K+NH1
K—-NH2
K+NH2
K—-NH3
K+NH3
10 J = 2,NX

Wi W o

[ ]

(JyK)

ViJ,X)
2. ¥VII4K)=VIJyK11)=-V{J,K12)+VJ,K21)4V (I, K22)

+ VIJ,K+1)

-VIJ,K31)-V(J,K32)

TINUF

11 M = 1,NH?

CALL GEUVE
CONTINUE

EOR UYSF INM URICLF.



[aRelel

OO

8

23

24

25
22
21

27

26

DD 12 J = 2,NX
VidyK) = VI, KI+DUMIII-VII,K11I-VEI, K123 +V{J K21 =V J,17 7
CONTINUF
COMTINUE
CONTINUE

RACKWARD RECURSINON-- DEFINE NFW TNNDEX, L2R=L2MAX-L2+i=NEY-LP.

DN 21 L2R = 1,L2MAX
L2 = NEY-L2R
N = L2
NH2 = 2%%x(12-1)
NH4 = 2%NH?
KL NH4+1
KH = KM-NM4
KT = 2%NH%
bDn 22 = KL yKH,KT
K21 K-NH2
K22 K+NH2
K41 K—=NH4
K42 K +NH4
DN 23 J = 2,NX
UM g VU Jd,yK)
VI{JyK) VIJK41) + V{J,K42) + VUJ,K)
CONTINUE
DN 24 M = 1,NH4
CALL GEUVF
CONTINUE
nn 25 4 = 2,4NX
VI{JeK) = VIJyKY + .52(DUM{II-V{J,K?1)-V(I,K22)})
FONTINUFE
CONT INUE
CONTINUF
no 26 K = ZQNYQZ
DN 27 J = 2yNX
VIJWK) = VIJsK=11 + V{J,K+1) + VIJ,K)
CONTINUE
N = 0
M = 1
CALL GEUVE
CONTINUE
RETURN
END

il W
=

SURRDUTINE GFUVE
ROUTINE T3 SCLVE BY GAUSSTIAN ELIMINATION THE TRIDIAG. FDo,
T(=ALF(J),RETP(J)y»-GAM{J))I*V = F, WHERF V AND F ARF 2-D.

DIMENSTON V(1299130),ALF({129),,BFTI129)},0AMI129),
S{129) 4N 6,64)

COMMON NEX s NXyNEY NYZNXP2,K,V

COMMON/DC/D /COEF/NyM,ALF,RET,GAM

st1) = 0.
IF (N.EQ.0) GN 70O 3
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= 2 4NX
= BET(J) + D{N,M)

T = 1./{BRETP + ALF[J)%S5{J-1))

S{J) = =GAM{J)x%T

VIJ+K) = TH{V{INKY + ALF(I)RVII=-1,K))
CONTINUF

GO TD 4

PO 5 J = 24NX
BFTP = BET(J)
T = 1./7{(BETP + ALF{J)%S{J-1))
S{J) = -GAMUJI*T

VIJ,KY = THIVIJ,K) + ALFIJI®VIJ-1,K})
COMTINUE
FOR BACKWARD SWEEP, DEFINE NEW TNDEX, JB = NX+2-J,
DO 2 JB = 2,NX
J = NXP2 - JB
VIJyK) = VIJ,yK) = SUIIXVII+],K)
CONTINUE
RETURN
£ND



APPENDIX F

CYCLIC REDUCTION FOR VERSIONS B TO E OF CAUCHY-RIEMANN SOLVER

A detailed algorithm is outlined here for the recursive cyclic reduction
of the block-tridiagonal matrix equation in the form of equations (50) and
(59) for use in the FORTRAN programs for versions B to E of the extended
Cauchy-Riemann solvers. The algorithm is a variant of Buneman's (ref. 2)
double cyclic reduction in which scalar-tridiagonal-equation solutions are
obtained by the Thomas algorithm (Gaussian elimination). Recursive cyclic
reduction was devised by Prof. G. Golub with collaboration of Dr. R. Hockney
(see refs. 1 to 3). The method is based on odd/even reduction, which was
used extensively by Hockney (ref. 1) in direct two~dimensional Poisson solvers
and was the basis for the extension by Buneman (ref. 2) to his double cyclic
reduction algorithm for solving Poisson's equation. Refer to reference 5 for
a treatise on the development of the method.

The block—-tridiagonal matrix equation to be solved represents the system
of 7 matrix equations:

_ () -
Vi HCV = Ve = ey (k=1,2, . .., n) (F1)

(0)

where #n =mn; - 1, n; = 2L with [ an integer, and in which each Pr is
a known m-dimensional vector,

(0) -
= F = F F o« e e
Py k= o lFy 0 Fope » Fo k! (¥2)
Each Vk is an m-dimensional vector to be determined:
V =
X COl[vl,k’ vZ,k’ . - e vm,k] (F3)
where, for simplicity, we have set, in equation (F1l),
V0 = Vn =0 (F4)
1
and €y 1is the m~dimensional tridiagonal matrix C defined by equa-
tions (21lc¢) and (21d):
C, = -0 .sB .,y .
0 =T (asB-ys) (F5)

with a, g and y; defined in terms.of the parameter B8 and in terms of
By,j and 82 L whlcﬁ are specified for J = 1 tom in each version of the
solver.
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The cyclic-reduction algorithm depends on the matrix factorization defined
as follows: each level of the recursion process is denoted by integer ¢,
which ranges from 1 to L-1. For each &, define an integer N and quantities
dQ,M as follows:

N=2 (L =1,2, . « .. L ~-1) (F6)
dz,l =2, dﬂ,2 = —dl,l (2 = 1) (F7a)
2 =2,3, ...,0-1
= /—— 3 3 s b
dyy=7"2+d .y 1 (F7b)
M=1, 2, , =N
2
_ 2 =2,3, ...,0-1,
dz,M ; dZ,ML%N 1 > (F7¢)
M=ZN+1, ..., 0-1,0

Then, given Cj, for each & there is a matrix C;, defined by
C =C2 - 21 (F8)

which has N tridiagonal matrices as factors:

_ (D) (2) 00))
o = CZ Cz . . C2 (F9)
in which the Mth factor is
2 =1tol -1,
CEM) =C+d I ) (F10a)
? M=1toN
=T (-a.,B%,-Y.
m( aJ,BJ, YJ) (F10b)
and
B = B. + d F10c)
J J L,M (
where -a;, B;, and —y; are the elements of C; in equations (F5). (Note

that the values of d .y can also be obtained from a cosine function (e.g.,
eq. (21b) in ref. 25), but are calculated in the sample FORTRAN programs
listed in appendices A to E by use of equations (F7). Note also the differ-
ence in notation, where €y here has the same role as Cy in ref. 25.)

For the first level of reduction (£ = 1), multiply each of the even

equations (k = 2, 4, . . ., n - 1) in equations (F1) by C, and add to it
the adjacent equations above and below to obtain the reduced system
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Ve TV T Vo T 'él) (k=2,4, . . ., n-1) (F11)

k+2
where
rD o k=1,2, 0w (F12a)
rél) - coréo) + réfi + réi; k=2, by « « «,n~-1) (F12b)

A special device was introduced by Buneman (ref. 2) for avoiding all matrix
multiplications (and a consequent stability problem) in the final solution
process. The device removes the matrix €y from the right side of equa-
tion (F12b) and replaces it by €C;, so that the implied matrix multiplication
need never be performed. To use this device, since we wish to remove Cj

and insert C;, and since €C; contains C%, we write equation (F12b) as

PRSI cg[?alréo)] + 10 4 (O

1

k k-1 k+1
= (C2 -1, (0) -1, (0) (0) (0)
= (€5 - 21)[CO Ty ] + 2I[CO P + r1 ¥y
Now define qél) and pél) by denoting the first term by Clqél) and the
remainder by pk . Thus
(1) _ (L, (1
rk = Clqk + Py (F13a)
where
- 0
qél) - Colpé ) (F13b)
vy _ . (1) (0) (0)

Note that equation (F13b) is just a tridiagonal matrix equation that can be

(1) (1)
k k

solved for ¢ , and then p is obtained from equation (Fl3c). Also,

substitution of equation (F13b) into (F1l3c) gives an equation that can be

(1) (1),
k .

solved for p without knowing qz

pé” _ Cal[gpéo)] + pg + pgg (F13d)

For the second and higher levels of reduction (£ =2, 3, . . ., L - 1),
we let

-2

h = (2)"° =n/4 (F14)
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and in the remaining reduced set of equations we multiply each of the even
equations (k = N, 2N, 3N, . . ., n; - N) by €Cg.1 and add to it the adjacent
equations above and below to obtain, for £ =2 to L - 1:

_ L0 ] _
_Vk—N + Csz Vk+N = rk (k =N, 2N, 3V, . . ., M N (F15)
where
(&) _ (2-1) (2-1) (a-1)
rk = Cz—lrk + rk—Zh + rk+2h (F16)
. . . . (2) (2)
As in equations (F13) above, we wish to define 9z and py, so that
()~ L @) '

Ty = Czqk + pk (F17a)
and this can be done by first substituting equation (F17a) (treating réz) as

a function of its superscript & and its subscript %) into each term on the
right side of equation (F16) and then using a procedure directly analogous to
that used to obtain equation (F13) from (F12) to eliminate C -1 in favor of
Cy. We then have equation (Fl7a) in place of (F16), with the results

) 2-1 “ (-1 2~-1 2-1
qé ) - qé '+ (Fz_l) [%é '+ qé—zh) M q£+2h{l (F175)
@) _ 5. () (2-1) (2-1)
Pp = 24,77 F Py T Praoy, (F17¢)
Furthermore, one can obtain (analogous to eq. (F13d)) an equation to solve for
péﬁ) without knowing any of the qél). If equation (Fl7c¢c) is solved for
B
qé") in terms of functions péz), and the resulting qéz) is then treated as

a function of its subscript k and superscript & to obtain expressions for

(2-1)  (a-1) (2-1)
qk

, qk—Zh s "2h to substitute into (F17b), one cobtains

and q

(2) (2-1) (2-1) (2-1) (2-2) _ (2-2)

Pr " T Pron tPry2p tPg " Prp Prin
“1ls. (2-1) _ (8-2) (2-2) (2-1) (2-1)
+ (CIZ,—I) [“’k Pren ™ " Pran - T Proon Yt Prion
(2-2) _ _(8-2)
" Prosn T Prasp ] (F17d)

The procedure for the algorithm to solve equations (Fl), to determine all
vj,k, uses the equations derived above as follows:

1. First, for integer L = logyni, compute the array dg,M for 2 =1
to L-1 and M = 1 to N wusing equations (F6) and (F7).
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(0)

2. For & =1, start the forward recursion with Py given by equa-

tion (F2) for k =1 to n. Use the Thomas algorithm (Gaussian elimination)
to solve equation (F13d) in the form

c 0l = 2pé°> (F18a)

successively for k =2, 4, . . ., n-1, where C,; is the tridiagonal matrix

defined in equation (F5) and where Oil)is defined by

p () 26 O 4 O (r18)

After solving equation (F1l8a) for each unknown vector Oél), then determine

pél) from (F18b).

3. For each 2 =2, 3, . . ., L-1, first write equation (F17d) in the
form
(r) _ (2-1) (2-2) (2-2) (2-1) (2-1)
g-1% = = 2P “Prn T Pran T Proop” T Priop
(8-2) (2-2)
T Pr-sn’ T Prean (F192)
for each k=N, 2N, . . ., n1-N, where Oéz) is defined by
() - 4() (2-1) (2-2) (2-2) (2-1) (2-1)
P 2% TP " TP T Pram Y Pron P (F15b)
Equation (Fl9a) is of the form (cf. eq. (F9)):
M) ]e(2) (M, _ (1) .
Cz—ll%z—l . e Cl_lok ] =z, (F20a)

where zél) represents the total vector on the right side of equation (F19a)
and each Céyi is a tridiagonal matrix defined by (F10). Similarly, let the

bracketed quantity on the left side of equation (F20a) be denoted by zéz)

so that

(2)](3) Wy -, (2
C!L—I[CSL—l ... €8y ]- 2 (F20b)

2
etc. Thus the procedure at this step is to first consider Zé ) as the
unknown vector in equation (F20a), and use the Thomas algorithm to solve (F20a)

2
Zé ), then with that vector known, solve equation (F20b) for the brac-

(2) o(®)
k &

for

keted quantity, and so forth, until © is known. Thus has been

obtained by a sequence of tridiagonal solutions, and then pé is obtained
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from equation (F19b). When this is done for all k =N, 2N, . . ., n1-N,
increase & and repeat this step 3.

4., After step 3 has been done for & = L-1, all the pél) are known

that are required for the backward recursion (back substitution). The back

substition proceeds successively, for each £ from IL-1 to O.
For =L-1, -2, . . ., 1, use equations (F15) and (Fl7a) (with (F11) and

(Fl3a) ‘as Well) 1n the form

(r) _ (%)
C ¢ k " + Vk + pk (F21a)
for % =N, W, 5N, . . ., n,-N, where 3" is defined by
7( = ¢Z§2) + (IZEQI) (F21b)

or with equations (Fl7¢) and (Fl3c),

SO € (2 1) _(2-1)
T3 ["k Proon ~ Preon (F2lc)
for k=N, 3V, 5V, . . ., n1;-N. Thus, one can now solve equation (F2la), by

use of the Thomas algorithm for a sequence of tridiagonal solutions in a
manner analogous to that used in equations (F20), to obtain ¢( ), with which

V), 1is then obtained from (F21c) for k=N, 3N, 5N, . . ., n1=N.

5. For £ = 0, equation (Fl) can be written as

- (0)
CoVie = Vier T Vi T P (F22)

and solved using the Thomas algorithm to obtain Vk for k=1, 3, 5, . . ., n.

In a mechine computation using this algorithm, the components (as needed)

of each of the vectors Fy, p(z), and V; can all occupy the same array in
computer memory for one value of k. Therefore, in addition to a relatively
small array for dj ,4 given by equations (F7), only one large array,
(m+1)x(m+1), is needed (vj,%) along with an mj-dimensional dummy vector for

the intermediate storage either of O( ) in equations (F18) or of ¢(£)
equations (F21). 1In addition, the Thomas algorithm itself requires ome dummy
my vector.
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